Strongly Interacting Matter in Magnetic Fields

Strongly Interacting Matter in Magnetic Fields PDF Author: Dmitri Kharzeev
Publisher: Springer
ISBN: 3642373054
Category : Science
Languages : en
Pages : 630

Get Book Here

Book Description
The physics of strongly interacting matter in an external magnetic field is presently emerging as a topic of great cross-disciplinary interest for particle, nuclear, astro- and condensed matter physicists. It is known that strong magnetic fields are created in heavy ion collisions, an insight that has made it possible to study a variety of surprising and intriguing phenomena that emerge from the interplay of quantum anomalies, the topology of non-Abelian gauge fields, and the magnetic field. In particular, the non-trivial topological configurations of the gluon field induce a non-dissipative electric current in the presence of a magnetic field. These phenomena have led to an extended formulation of relativistic hydrodynamics, called chiral magnetohydrodynamics. Hitherto unexpected applications in condensed matter physics include graphene and topological insulators. Other fields of application include astrophysics, where strong magnetic fields exist in magnetars and pulsars. Last but not least, an important new theoretical tool that will be revisited and which made much of the progress surveyed in this book possible is the holographic principle - the correspondence between quantum field theory and gravity in extra dimensions. Edited and authored by the pioneers and leading experts in this newly emerging field, this book offers a valuable resource for a broad community of physicists and graduate students.

Strongly Interacting Matter in Magnetic Fields

Strongly Interacting Matter in Magnetic Fields PDF Author: Dmitri Kharzeev
Publisher: Springer
ISBN: 3642373054
Category : Science
Languages : en
Pages : 630

Get Book Here

Book Description
The physics of strongly interacting matter in an external magnetic field is presently emerging as a topic of great cross-disciplinary interest for particle, nuclear, astro- and condensed matter physicists. It is known that strong magnetic fields are created in heavy ion collisions, an insight that has made it possible to study a variety of surprising and intriguing phenomena that emerge from the interplay of quantum anomalies, the topology of non-Abelian gauge fields, and the magnetic field. In particular, the non-trivial topological configurations of the gluon field induce a non-dissipative electric current in the presence of a magnetic field. These phenomena have led to an extended formulation of relativistic hydrodynamics, called chiral magnetohydrodynamics. Hitherto unexpected applications in condensed matter physics include graphene and topological insulators. Other fields of application include astrophysics, where strong magnetic fields exist in magnetars and pulsars. Last but not least, an important new theoretical tool that will be revisited and which made much of the progress surveyed in this book possible is the holographic principle - the correspondence between quantum field theory and gravity in extra dimensions. Edited and authored by the pioneers and leading experts in this newly emerging field, this book offers a valuable resource for a broad community of physicists and graduate students.

Strongly Interacting Matter under Rotation

Strongly Interacting Matter under Rotation PDF Author: Francesco Becattini
Publisher: Springer Nature
ISBN: 3030714276
Category : Science
Languages : en
Pages : 400

Get Book Here

Book Description
This book addresses the needs of growing community of graduate students and researchers new to the area, for a survey that covers a wide range of pertinent topics, summarizes the current status of the field, and provides the necessary pedagogical materials for newcomers. The investigation of strongly interacting matter under the influence of macroscopic rotational motion is a new, emerging area of research that encompasses a broad range of conventional physics disciplines such as nuclear physics, astrophysics, and condensed matter physics, where the non-trivial interplay between global rotation and spin is generating many novel phenomena. Edited and authored by leading researchers in the field, this book covers the following topics: thermodynamics and equilibrium distribution of rotating matter; quantum field theory and rotation; phase structure of QCD matter under rotation; kinetic theory of relativistic rotating matter; hydrodynamics with spin; magnetic effects in fluid systems with high vorticity and charge; polarization measurements in heavy ion collisions; hydrodynamic modeling of the QCD plasma and polarization calculation in relativistic heavy ion collisions; chiral vortical effect; rotational effects and related topics in neutron stars and condensed matter systems.

Extreme States of Matter in Strong Interaction Physics

Extreme States of Matter in Strong Interaction Physics PDF Author: Helmut Satz
Publisher: Springer Science & Business Media
ISBN: 3642239072
Category : Science
Languages : en
Pages : 245

Get Book Here

Book Description
The thermodynamics of strongly interacting matter has become a profound and challenging area of modern physics, both in theory and in experiment. Statistical quantum chromodynamics, through analytical as well as numerical studies, provides the main theoretical tool, while in experiment, high-energy nuclear collisions are the key for extensive laboratory investigations. The field therefore straddles statistical, particle and nuclear physics, both conceptually and in the methods of investigation used. This course-tested primer addresses above all the many young scientists starting their scientific research in this field, providing them with a general, self-contained introduction that emphasizes in particular the basic concepts and ideas, with the aim of explaining why we do what we do. To achieve this goal, the present text concentrates mainly on equilibrium thermodynamics: first, the fundamental ideas of strong interaction thermodynamics are introduced and then the main concepts and methods used in the study of the physics of complex systems are summarized. Subsequently, simplified phenomenological pictures, leading to critical behavior in hadronic matter and to hadron-quark phase transitions are introduced, followed by elements of finite-temperature lattice QCD leading to the important results obtained in computer simulation studies of the lattice approach. Next, the relation of the resulting critical behavior to symmetry breaking/restoration in QCD is clarified before the text turns to the study of the QCD phase diagram. The presentation of bulk equilibrium thermodynamics is completed by studying the properties of the quark-gluon plasma as new state of strongly interacting matter. The final chapters of the book are devoted to more specific topics which arise when nuclear collisions are considered as a tool for the experimental study of QCD thermodynamics.

Phase Structure of Strongly Interacting Matter

Phase Structure of Strongly Interacting Matter PDF Author: Jean Cleymans
Publisher: Springer Science & Business Media
ISBN: 3642878210
Category : Science
Languages : en
Pages : 377

Get Book Here

Book Description
The 6th Advanced Course in Theoretical Physics was held at the University of Cape Town, January 8-19, 1990. The topic of the course was "Phase Structure of Strongly Interacting Matter". There were ten invited speakers from overseas, each having up to six hours in which to present his field of research to a relatively small audience of about 50 participants. This allowed for the presentation of a broad, coherent and pedagogical review of the present status of the field. In addition there were several one-hour presentations by local participants. The main emphasis of the course was on the study of the properties of high density hot nuclear matter. This field is of particular interest because of the belief that a deconfined quark-gluon plasma could be created in such an environment when the temperature reaches about 200MeV. In the nuclear regime a so-called "liquid-to-gas" phase transition is expected at a temperature of approximately 10- 20MeV. Both of these topics received ample attention at the school. Owing the nature of the field, there exists much overlapping interest from both the nuclear physics and high-energy particle physics communities. It is hoped that these proceedings will contribute to building a bridge between the two groups.

Holographic Duality in Condensed Matter Physics

Holographic Duality in Condensed Matter Physics PDF Author: Jan Zaanen
Publisher: Cambridge University Press
ISBN: 131641213X
Category : Science
Languages : en
Pages : 587

Get Book Here

Book Description
A pioneering treatise presenting how the new mathematical techniques of holographic duality unify seemingly unrelated fields of physics. This innovative development morphs quantum field theory, general relativity and the renormalisation group into a single computational framework and this book is the first to bring together a wide range of research in this rapidly developing field. Set within the context of condensed matter physics and using boxes highlighting the specific techniques required, it examines the holographic description of thermal properties of matter, Fermi liquids and superconductors, and hitherto unknown forms of macroscopically entangled quantum matter in terms of general relativity, stars and black holes. Showing that holographic duality can succeed where classic mathematical approaches fail, this text provides a thorough overview of this major breakthrough at the heart of modern physics. The inclusion of extensive introductory material using non-technical language and online Mathematica notebooks ensures the appeal to students and researchers alike.

Interacting Electrons and Quantum Magnetism

Interacting Electrons and Quantum Magnetism PDF Author: Assa Auerbach
Publisher: Springer Science & Business Media
ISBN: 1461208696
Category : Science
Languages : en
Pages : 249

Get Book Here

Book Description
In the excitement and rapid pace of developments, writing pedagogical texts has low priority for most researchers. However, in transforming my lecture l notes into this book, I found a personal benefit: the organization of what I understand in a (hopefully simple) logical sequence. Very little in this text is my original contribution. Most of the knowledge was collected from the research literature. Some was acquired by conversations with colleagues; a kind of physics oral tradition passed between disciples of a similar faith. For many years, diagramatic perturbation theory has been the major theoretical tool for treating interactions in metals, semiconductors, itiner ant magnets, and superconductors. It is in essence a weak coupling expan sion about free quasiparticles. Many experimental discoveries during the last decade, including heavy fermions, fractional quantum Hall effect, high temperature superconductivity, and quantum spin chains, are not readily accessible from the weak coupling point of view. Therefore, recent years have seen vigorous development of alternative, nonperturbative tools for handling strong electron-electron interactions. I concentrate on two basic paradigms of strongly interacting (or con strained) quantum systems: the Hubbard model and the Heisenberg model. These models are vehicles for fundamental concepts, such as effective Ha miltonians, variational ground states, spontaneous symmetry breaking, and quantum disorder. In addition, they are used as test grounds for various nonperturbative approximation schemes that have found applications in diverse areas of theoretical physics.

Transport Theories for Strongly-Interacting Systems

Transport Theories for Strongly-Interacting Systems PDF Author: Wolfgang Cassing
Publisher: Springer Nature
ISBN: 3030802957
Category : Science
Languages : en
Pages : 260

Get Book Here

Book Description
This book provides an overview on transport theories, focusing on applications and the relativistic off-shell transport theory which are of particular interest for physicists working in the field of relativistic strong-interaction physics, e.g. relativistic or ultra-relativistic heavy-ion collisions or the evolution of the early universe. In this regard, a thorough derivation of the transport equations and a careful analysis of the approximations employed is given. The text is enriched with a multitude of Appendices that partly recall elements of quantum mechanics and field theory or present examples for specific models. Specific exercises are given throughout the chapters. As a basic knowledge the reader should be familiar with quantum mechanics and its principles as well as some basic concepts of the quantum many-body physics and field theory. All chapters close with a short summary and numerical calculations are provided to master and illustrate the subject.

Series Expansion Methods for Strongly Interacting Lattice Models

Series Expansion Methods for Strongly Interacting Lattice Models PDF Author: Jaan Oitmaa
Publisher: Cambridge University Press
ISBN: 0521842425
Category : Science
Languages : en
Pages : 338

Get Book Here

Book Description
A comprehensive guide to series expansion methods for lattice models in theoretical physics.

Proceedings of the XXIV DAE-BRNS High Energy Physics Symposium, Jatni, India

Proceedings of the XXIV DAE-BRNS High Energy Physics Symposium, Jatni, India PDF Author: Bedangadas Mohanty
Publisher: Springer Nature
ISBN: 981192354X
Category : Science
Languages : en
Pages : 870

Get Book Here

Book Description
This book presents proceedings from the XXIV DAE-BRNS High Energy Physics (HEP) Symposium 2020, held at the National Institute of Science Education and Research, Jatni, Odisha, India. The contributions cover a variety of topics in particle physics, astroparticle physics, cosmology and related areas from both experimental and theoretical perspectives, namely (1) Standard Model Physics, (2) Beyond Standard Model Physics, (3) Relativistic Heavy-Ion Physics & QCD, (4) Neutrino Physics, (5) Particle Astrophysics & Cosmology, (6) Detector Development Future Facilities and Experiments, (7) Formal Theory, (8) Societal Applications: Medical Physics, Imaging, etc.

Particle Physics at the Year of Astronomy

Particle Physics at the Year of Astronomy PDF Author: A. I. Studenikin
Publisher: World Scientific
ISBN: 9814329681
Category : Science
Languages : en
Pages : 472

Get Book Here

Book Description
These proceedings are devoted to a wide variety of both theoretical and experimental areas in particle physics. The topics include physics at accelerators and studies of Standard Model and Beyond, neutrino and astroparticle physics, cosmology, CP Violation and rare decays, hadron physics, and new developments in quantum field theory. The papers of the volume reveal the present status and new development in the above mentioned items. In particular, the first results on measurement of LHC pp collision events are also reported.