Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 359
Book Description
In this project, we will perform an analysis and prediction task on stroke data using machine learning and deep learning techniques. The entire process will be implemented with Python GUI for a user-friendly experience. We start by exploring the stroke dataset, which contains information about various factors related to individuals and their likelihood of experiencing a stroke. We load the dataset and examine its structure, features, and statistical summary. Next, we preprocess the data to ensure its suitability for training machine learning models. This involves handling missing values, encoding categorical variables, and scaling numerical features. We utilize techniques such as data imputation and label encoding. To gain insights from the data, we visualize its distribution and relationships between variables. We create plots such as histograms, scatter plots, and correlation matrices to understand the patterns and correlations in the data. To improve model performance and reduce dimensionality, we select the most relevant features for prediction. We employ techniques such as correlation analysis, feature importance ranking, and domain knowledge to identify the key predictors of stroke. Before training our models, we split the dataset into training and testing subsets. The training set will be used to train the models, while the testing set will evaluate their performance on unseen data. We construct several machine learning models to predict stroke. These models include Support Vector, Logistic Regression, K-Nearest Neighbors (KNN), Decision Tree, Random Forest, Gradient Boosting, Light Gradient Boosting, Naive Bayes, Adaboost, and XGBoost. Each model is built and trained using the training dataset. We train each model on the training dataset and evaluate its performance using appropriate metrics such as accuracy, precision, recall, and F1-score. This helps us assess how well the models can predict stroke based on the given features. To optimize the models' performance, we perform hyperparameter tuning using techniques like grid search or randomized search. This involves systematically exploring different combinations of hyperparameters to find the best configuration for each model. After training and tuning the models, we save them to disk using joblib. This allows us to reuse the trained models for future predictions without having to train them again. With the models trained and saved, we move on to implementing the Python GUI. We utilize PyQt libraries to create an interactive graphical user interface that provides a seamless user experience. The GUI consists of various components such as buttons, checkboxes, input fields, and plots. These components allow users to interact with the application, select prediction models, and visualize the results. In addition to the machine learning models, we also implement an ANN using TensorFlow. The ANN is trained on the preprocessed dataset, and its architecture consists of a dense layer with a sigmoid activation function. We train the ANN on the training dataset, monitoring its performance using metrics like loss and accuracy. We visualize the training progress by plotting the loss and accuracy curves over epochs. Once the ANN is trained, we save the model to disk using the h5 format. This allows us to load the trained ANN for future predictions. In the GUI, users have the option to choose the ANN as the prediction model. When selected, the ANN model is loaded from disk, and predictions are made on the testing dataset. The predicted labels are compared with the true labels for evaluation. To assess the accuracy of the ANN predictions, we calculate various evaluation metrics such as accuracy score, precision, recall, and classification report. These metrics provide insights into the ANN's performance in predicting stroke. We create plots to visualize the results of the ANN predictions. These plots include a comparison of the true values and predicted values, as well as a confusion matrix to analyze the classification accuracy. The training history of the ANN, including the loss and accuracy curves over epochs, is plotted and displayed in the GUI. This allows users to understand how the model's performance improved during training. In summary, this project covers the analysis and prediction of stroke using machine learning and deep learning models. It encompasses data exploration, preprocessing, model training, hyperparameter tuning, GUI implementation, ANN training, and prediction visualization. The Python GUI enhances the user experience by providing an interactive and intuitive platform for exploring and predicting stroke based on various features.
STROKE: Analysis and Prediction Using Scikit-Learn, Keras, and TensorFlow with Python GUI
Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 359
Book Description
In this project, we will perform an analysis and prediction task on stroke data using machine learning and deep learning techniques. The entire process will be implemented with Python GUI for a user-friendly experience. We start by exploring the stroke dataset, which contains information about various factors related to individuals and their likelihood of experiencing a stroke. We load the dataset and examine its structure, features, and statistical summary. Next, we preprocess the data to ensure its suitability for training machine learning models. This involves handling missing values, encoding categorical variables, and scaling numerical features. We utilize techniques such as data imputation and label encoding. To gain insights from the data, we visualize its distribution and relationships between variables. We create plots such as histograms, scatter plots, and correlation matrices to understand the patterns and correlations in the data. To improve model performance and reduce dimensionality, we select the most relevant features for prediction. We employ techniques such as correlation analysis, feature importance ranking, and domain knowledge to identify the key predictors of stroke. Before training our models, we split the dataset into training and testing subsets. The training set will be used to train the models, while the testing set will evaluate their performance on unseen data. We construct several machine learning models to predict stroke. These models include Support Vector, Logistic Regression, K-Nearest Neighbors (KNN), Decision Tree, Random Forest, Gradient Boosting, Light Gradient Boosting, Naive Bayes, Adaboost, and XGBoost. Each model is built and trained using the training dataset. We train each model on the training dataset and evaluate its performance using appropriate metrics such as accuracy, precision, recall, and F1-score. This helps us assess how well the models can predict stroke based on the given features. To optimize the models' performance, we perform hyperparameter tuning using techniques like grid search or randomized search. This involves systematically exploring different combinations of hyperparameters to find the best configuration for each model. After training and tuning the models, we save them to disk using joblib. This allows us to reuse the trained models for future predictions without having to train them again. With the models trained and saved, we move on to implementing the Python GUI. We utilize PyQt libraries to create an interactive graphical user interface that provides a seamless user experience. The GUI consists of various components such as buttons, checkboxes, input fields, and plots. These components allow users to interact with the application, select prediction models, and visualize the results. In addition to the machine learning models, we also implement an ANN using TensorFlow. The ANN is trained on the preprocessed dataset, and its architecture consists of a dense layer with a sigmoid activation function. We train the ANN on the training dataset, monitoring its performance using metrics like loss and accuracy. We visualize the training progress by plotting the loss and accuracy curves over epochs. Once the ANN is trained, we save the model to disk using the h5 format. This allows us to load the trained ANN for future predictions. In the GUI, users have the option to choose the ANN as the prediction model. When selected, the ANN model is loaded from disk, and predictions are made on the testing dataset. The predicted labels are compared with the true labels for evaluation. To assess the accuracy of the ANN predictions, we calculate various evaluation metrics such as accuracy score, precision, recall, and classification report. These metrics provide insights into the ANN's performance in predicting stroke. We create plots to visualize the results of the ANN predictions. These plots include a comparison of the true values and predicted values, as well as a confusion matrix to analyze the classification accuracy. The training history of the ANN, including the loss and accuracy curves over epochs, is plotted and displayed in the GUI. This allows users to understand how the model's performance improved during training. In summary, this project covers the analysis and prediction of stroke using machine learning and deep learning models. It encompasses data exploration, preprocessing, model training, hyperparameter tuning, GUI implementation, ANN training, and prediction visualization. The Python GUI enhances the user experience by providing an interactive and intuitive platform for exploring and predicting stroke based on various features.
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 359
Book Description
In this project, we will perform an analysis and prediction task on stroke data using machine learning and deep learning techniques. The entire process will be implemented with Python GUI for a user-friendly experience. We start by exploring the stroke dataset, which contains information about various factors related to individuals and their likelihood of experiencing a stroke. We load the dataset and examine its structure, features, and statistical summary. Next, we preprocess the data to ensure its suitability for training machine learning models. This involves handling missing values, encoding categorical variables, and scaling numerical features. We utilize techniques such as data imputation and label encoding. To gain insights from the data, we visualize its distribution and relationships between variables. We create plots such as histograms, scatter plots, and correlation matrices to understand the patterns and correlations in the data. To improve model performance and reduce dimensionality, we select the most relevant features for prediction. We employ techniques such as correlation analysis, feature importance ranking, and domain knowledge to identify the key predictors of stroke. Before training our models, we split the dataset into training and testing subsets. The training set will be used to train the models, while the testing set will evaluate their performance on unseen data. We construct several machine learning models to predict stroke. These models include Support Vector, Logistic Regression, K-Nearest Neighbors (KNN), Decision Tree, Random Forest, Gradient Boosting, Light Gradient Boosting, Naive Bayes, Adaboost, and XGBoost. Each model is built and trained using the training dataset. We train each model on the training dataset and evaluate its performance using appropriate metrics such as accuracy, precision, recall, and F1-score. This helps us assess how well the models can predict stroke based on the given features. To optimize the models' performance, we perform hyperparameter tuning using techniques like grid search or randomized search. This involves systematically exploring different combinations of hyperparameters to find the best configuration for each model. After training and tuning the models, we save them to disk using joblib. This allows us to reuse the trained models for future predictions without having to train them again. With the models trained and saved, we move on to implementing the Python GUI. We utilize PyQt libraries to create an interactive graphical user interface that provides a seamless user experience. The GUI consists of various components such as buttons, checkboxes, input fields, and plots. These components allow users to interact with the application, select prediction models, and visualize the results. In addition to the machine learning models, we also implement an ANN using TensorFlow. The ANN is trained on the preprocessed dataset, and its architecture consists of a dense layer with a sigmoid activation function. We train the ANN on the training dataset, monitoring its performance using metrics like loss and accuracy. We visualize the training progress by plotting the loss and accuracy curves over epochs. Once the ANN is trained, we save the model to disk using the h5 format. This allows us to load the trained ANN for future predictions. In the GUI, users have the option to choose the ANN as the prediction model. When selected, the ANN model is loaded from disk, and predictions are made on the testing dataset. The predicted labels are compared with the true labels for evaluation. To assess the accuracy of the ANN predictions, we calculate various evaluation metrics such as accuracy score, precision, recall, and classification report. These metrics provide insights into the ANN's performance in predicting stroke. We create plots to visualize the results of the ANN predictions. These plots include a comparison of the true values and predicted values, as well as a confusion matrix to analyze the classification accuracy. The training history of the ANN, including the loss and accuracy curves over epochs, is plotted and displayed in the GUI. This allows users to understand how the model's performance improved during training. In summary, this project covers the analysis and prediction of stroke using machine learning and deep learning models. It encompasses data exploration, preprocessing, model training, hyperparameter tuning, GUI implementation, ANN training, and prediction visualization. The Python GUI enhances the user experience by providing an interactive and intuitive platform for exploring and predicting stroke based on various features.
DATA SCIENCE WORKSHOP: Heart Failure Analysis and Prediction Using Scikit-Learn, Keras, and TensorFlow with Python GUI
Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 398
Book Description
In this "Heart Failure Analysis and Prediction" data science workshop, we embarked on a comprehensive journey through the intricacies of cardiovascular health assessment using machine learning and deep learning techniques. Our journey began with an in-depth exploration of the dataset, where we meticulously studied its characteristics, dimensions, and underlying patterns. This initial step laid the foundation for our subsequent analyses. We delved into a detailed examination of the distribution of categorized features, meticulously dissecting variables such as age, sex, serum sodium levels, diabetes status, high blood pressure, smoking habits, and anemia. This critical insight enabled us to comprehend how these features relate to each other and potentially impact the occurrence of heart failure, providing valuable insights for subsequent modeling. Subsequently, we engaged in the heart of the project: predicting heart failure. Employing machine learning models, we harnessed the power of grid search to optimize model parameters, meticulously fine-tuning algorithms to achieve the best predictive performance. Through an array of models including Logistic Regression, KNeighbors Classifier, DecisionTrees Classifier, Random Forest Classifier, Gradient Boosting Classifier, XGB Classifier, LGBM Classifier, and MLP Classifier, we harnessed metrics like accuracy, precision, recall, and F1-score to meticulously evaluate each model's efficacy. Venturing further into the realm of deep learning, we embarked on an exploration of neural networks, striving to capture intricate patterns in the data. Our arsenal included diverse architectures such as Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM) networks, Self Organizing Maps (SOMs), Recurrent Neural Networks (RNN), Deep Belief Networks (DBN), and Autoencoders. These architectures enabled us to unravel complex relationships within the data, yielding nuanced insights into the dynamics of heart failure prediction. Our approach to evaluating model performance was rigorous and thorough. By scrutinizing metrics such as accuracy, recall, precision, and F1-score, we gained a comprehensive understanding of the models' strengths and limitations. These metrics enabled us to make informed decisions about model selection and refinement, ensuring that our predictions were as accurate and reliable as possible. The evaluation phase emerges as a pivotal aspect, accentuated by an array of comprehensive metrics. Performance assessment encompasses metrics such as accuracy, precision, recall, F1-score, and ROC-AUC. Cross-validation and learning curves are strategically employed to mitigate overfitting and ensure model generalization. Furthermore, visual aids such as ROC curves and confusion matrices provide a lucid depiction of the models' interplay between sensitivity and specificity. Complementing our advanced analytical endeavors, we also embarked on the creation of a Python GUI using PyQt. This intuitive graphical interface provided an accessible platform for users to interact with the developed models and gain meaningful insights into heart health. The GUI streamlined the prediction process, making it user-friendly and facilitating the application of our intricate models to real-world scenarios. In conclusion, the "Heart Failure Analysis and Prediction" data science workshop was a journey through the realms of data exploration, feature distribution analysis, and the application of cutting-edge machine learning and deep learning techniques. By meticulously evaluating model performance, harnessing the capabilities of neural networks, and culminating in the creation of a user-friendly Python GUI, we armed participants with a comprehensive toolkit to analyze and predict heart failure with precision and innovation.
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 398
Book Description
In this "Heart Failure Analysis and Prediction" data science workshop, we embarked on a comprehensive journey through the intricacies of cardiovascular health assessment using machine learning and deep learning techniques. Our journey began with an in-depth exploration of the dataset, where we meticulously studied its characteristics, dimensions, and underlying patterns. This initial step laid the foundation for our subsequent analyses. We delved into a detailed examination of the distribution of categorized features, meticulously dissecting variables such as age, sex, serum sodium levels, diabetes status, high blood pressure, smoking habits, and anemia. This critical insight enabled us to comprehend how these features relate to each other and potentially impact the occurrence of heart failure, providing valuable insights for subsequent modeling. Subsequently, we engaged in the heart of the project: predicting heart failure. Employing machine learning models, we harnessed the power of grid search to optimize model parameters, meticulously fine-tuning algorithms to achieve the best predictive performance. Through an array of models including Logistic Regression, KNeighbors Classifier, DecisionTrees Classifier, Random Forest Classifier, Gradient Boosting Classifier, XGB Classifier, LGBM Classifier, and MLP Classifier, we harnessed metrics like accuracy, precision, recall, and F1-score to meticulously evaluate each model's efficacy. Venturing further into the realm of deep learning, we embarked on an exploration of neural networks, striving to capture intricate patterns in the data. Our arsenal included diverse architectures such as Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM) networks, Self Organizing Maps (SOMs), Recurrent Neural Networks (RNN), Deep Belief Networks (DBN), and Autoencoders. These architectures enabled us to unravel complex relationships within the data, yielding nuanced insights into the dynamics of heart failure prediction. Our approach to evaluating model performance was rigorous and thorough. By scrutinizing metrics such as accuracy, recall, precision, and F1-score, we gained a comprehensive understanding of the models' strengths and limitations. These metrics enabled us to make informed decisions about model selection and refinement, ensuring that our predictions were as accurate and reliable as possible. The evaluation phase emerges as a pivotal aspect, accentuated by an array of comprehensive metrics. Performance assessment encompasses metrics such as accuracy, precision, recall, F1-score, and ROC-AUC. Cross-validation and learning curves are strategically employed to mitigate overfitting and ensure model generalization. Furthermore, visual aids such as ROC curves and confusion matrices provide a lucid depiction of the models' interplay between sensitivity and specificity. Complementing our advanced analytical endeavors, we also embarked on the creation of a Python GUI using PyQt. This intuitive graphical interface provided an accessible platform for users to interact with the developed models and gain meaningful insights into heart health. The GUI streamlined the prediction process, making it user-friendly and facilitating the application of our intricate models to real-world scenarios. In conclusion, the "Heart Failure Analysis and Prediction" data science workshop was a journey through the realms of data exploration, feature distribution analysis, and the application of cutting-edge machine learning and deep learning techniques. By meticulously evaluating model performance, harnessing the capabilities of neural networks, and culminating in the creation of a user-friendly Python GUI, we armed participants with a comprehensive toolkit to analyze and predict heart failure with precision and innovation.
Data Science and Deep Learning Workshop For Scientists and Engineers
Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 1978
Book Description
WORKSHOP 1: In this workshop, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to implement deep learning on recognizing traffic signs using GTSRB dataset, detecting brain tumor using Brain Image MRI dataset, classifying gender, and recognizing facial expression using FER2013 dataset In Chapter 1, you will learn to create GUI applications to display line graph using PyQt. You will also learn how to display image and its histogram. In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, Pandas, NumPy and other libraries to perform prediction on handwritten digits using MNIST dataset with PyQt. You will build a GUI application for this purpose. In Chapter 3, you will learn how to perform recognizing traffic signs using GTSRB dataset from Kaggle. There are several different types of traffic signs like speed limits, no entry, traffic signals, turn left or right, children crossing, no passing of heavy vehicles, etc. Traffic signs classification is the process of identifying which class a traffic sign belongs to. In this Python project, you will build a deep neural network model that can classify traffic signs in image into different categories. With this model, you will be able to read and understand traffic signs which are a very important task for all autonomous vehicles. You will build a GUI application for this purpose. In Chapter 4, you will learn how to perform detecting brain tumor using Brain Image MRI dataset provided by Kaggle (https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection) using CNN model. You will build a GUI application for this purpose. In Chapter 5, you will learn how to perform classifying gender using dataset provided by Kaggle (https://www.kaggle.com/cashutosh/gender-classification-dataset) using MobileNetV2 and CNN models. You will build a GUI application for this purpose. In Chapter 6, you will learn how to perform recognizing facial expression using FER2013 dataset provided by Kaggle (https://www.kaggle.com/nicolejyt/facialexpressionrecognition) using CNN model. You will also build a GUI application for this purpose. WORKSHOP 2: In this workshop, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to implement deep learning on classifying fruits, classifying cats/dogs, detecting furnitures, and classifying fashion. In Chapter 1, you will learn to create GUI applications to display line graph using PyQt. You will also learn how to display image and its histogram. Then, you will learn how to use OpenCV, NumPy, and other libraries to perform feature extraction with Python GUI (PyQt). The feature detection techniques used in this chapter are Harris Corner Detection, Shi-Tomasi Corner Detector, and Scale-Invariant Feature Transform (SIFT). In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying fruits using Fruits 360 dataset provided by Kaggle (https://www.kaggle.com/moltean/fruits/code) using Transfer Learning and CNN models. You will build a GUI application for this purpose. In Chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying cats/dogs using dataset provided by Kaggle (https://www.kaggle.com/chetankv/dogs-cats-images) using Using CNN with Data Generator. You will build a GUI application for this purpose. In Chapter 4, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting furnitures using Furniture Detector dataset provided by Kaggle (https://www.kaggle.com/akkithetechie/furniture-detector) using VGG16 model. You will build a GUI application for this purpose. In Chapter 5, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying fashion using Fashion MNIST dataset provided by Kaggle (https://www.kaggle.com/zalando-research/fashionmnist/code) using CNN model. You will build a GUI application for this purpose. WORKSHOP 3: In this workshop, you will implement deep learning on detecting vehicle license plates, recognizing sign language, and detecting surface crack using TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries. In Chapter 1, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting vehicle license plates using Car License Plate Detection dataset provided by Kaggle (https://www.kaggle.com/andrewmvd/car-plate-detection/download). In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform sign language recognition using Sign Language Digits Dataset provided by Kaggle (https://www.kaggle.com/ardamavi/sign-language-digits-dataset/download). In Chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting surface crack using Surface Crack Detection provided by Kaggle (https://www.kaggle.com/arunrk7/surface-crack-detection/download). WORKSHOP 4: In this workshop, implement deep learning-based image classification on detecting face mask, classifying weather, and recognizing flower using TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries. In Chapter 1, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting face mask using Face Mask Detection Dataset provided by Kaggle (https://www.kaggle.com/omkargurav/face-mask-dataset/download). In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to classify weather using Multi-class Weather Dataset provided by Kaggle (https://www.kaggle.com/pratik2901/multiclass-weather-dataset/download). WORKSHOP 5: In this workshop, implement deep learning-based image classification on classifying monkey species, recognizing rock, paper, and scissor, and classify airplane, car, and ship using TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries. In Chapter 1, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to classify monkey species using 10 Monkey Species dataset provided by Kaggle (https://www.kaggle.com/slothkong/10-monkey-species/download). In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to recognize rock, paper, and scissor using 10 Monkey Species dataset provided by Kaggle (https://www.kaggle.com/sanikamal/rock-paper-scissors-dataset/download). WORKSHOP 6: In this worksshop, you will implement two data science projects using Scikit-Learn, Scipy, and other libraries with Python GUI. In Chapter 1, you will learn how to use Scikit-Learn, Scipy, and other libraries to perform how to predict traffic (number of vehicles) in four different junctions using Traffic Prediction Dataset provided by Kaggle (https://www.kaggle.com/fedesoriano/traffic-prediction-dataset/download). This dataset contains 48.1k (48120) observations of the number of vehicles each hour in four different junctions: 1) DateTime; 2) Juction; 3) Vehicles; and 4) ID. In Chapter 2, you will learn how to use Scikit-Learn, NumPy, Pandas, and other libraries to perform how to analyze and predict heart attack using Heart Attack Analysis & Prediction Dataset provided by Kaggle (https://www.kaggle.com/rashikrahmanpritom/heart-attack-analysis-prediction-dataset/download). WORKSHOP 7: In this workshop, you will implement two data science projects using Scikit-Learn, Scipy, and other libraries with Python GUI. In Project 1, you will learn how to use Scikit-Learn, NumPy, Pandas, Seaborn, and other libraries to perform how to predict early stage diabetes using Early Stage Diabetes Risk Prediction Dataset provided by Kaggle (https://www.kaggle.com/ishandutta/early-stage-diabetes-risk-prediction-dataset/download). This dataset contains the sign and symptpom data of newly diabetic or would be diabetic patient. This has been collected using direct questionnaires from the patients of Sylhet Diabetes Hospital in Sylhet, Bangladesh and approved by a doctor. You will develop a GUI using PyQt5 to plot distribution of features, feature importance, cross validation score, and prediced values versus true values. The machine learning models used in this project are Adaboost, Random Forest, Gradient Boosting, Logistic Regression, and Support Vector Machine. In Project 2, you will learn how to use Scikit-Learn, NumPy, Pandas, and other libraries to perform how to analyze and predict breast cancer using Breast Cancer Prediction Dataset provided by Kaggle (https://www.kaggle.com/merishnasuwal/breast-cancer-prediction-dataset/download). Worldwide, breast cancer is the most common type of cancer in women and the second highest in terms of mortality rates.Diagnosis of breast cancer is performed when an abnormal lump is found (from self-examination or x-ray) or a tiny speck of calcium is seen (on an x-ray). After a suspicious lump is found, the doctor will conduct a diagnosis to determine whether it is cancerous and, if so, whether it has spread to other parts of the body. This breast cancer dataset was obtained from the University of Wisconsin Hospitals, Madison from Dr. William H. Wolberg. You will develop a GUI using PyQt5 to plot distribution of features, pairwise relationship, test scores, prediced values versus true values, confusion matrix, and decision boundary. The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, and Support Vector Machine. WORKSHOP 8: In this workshop, you will learn how to use Scikit-Learn, TensorFlow, Keras, NumPy, Pandas, Seaborn, and other libraries to implement brain tumor classification and detection with machine learning using Brain Tumor dataset provided by Kaggle. This dataset contains five first order features: Mean (the contribution of individual pixel intensity for the entire image), Variance (used to find how each pixel varies from the neighboring pixel 0, Standard Deviation (the deviation of measured Values or the data from its mean), Skewness (measures of symmetry), and Kurtosis (describes the peak of e.g. a frequency distribution). It also contains eight second order features: Contrast, Energy, ASM (Angular second moment), Entropy, Homogeneity, Dissimilarity, Correlation, and Coarseness. The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, and Support Vector Machine. The deep learning models used in this project are MobileNet and ResNet50. In this project, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, training loss, and training accuracy. WORKSHOP 9: In this workshop, you will learn how to use Scikit-Learn, Keras, TensorFlow, NumPy, Pandas, Seaborn, and other libraries to perform COVID-19 Epitope Prediction using COVID-19/SARS B-cell Epitope Prediction dataset provided in Kaggle. All of three datasets consists of information of protein and peptide: parent_protein_id : parent protein ID; protein_seq : parent protein sequence; start_position : start position of peptide; end_position : end position of peptide; peptide_seq : peptide sequence; chou_fasman : peptide feature; emini : peptide feature, relative surface accessibility; kolaskar_tongaonkar : peptide feature, antigenicity; parker : peptide feature, hydrophobicity; isoelectric_point : protein feature; aromacity: protein feature; hydrophobicity : protein feature; stability : protein feature; and target : antibody valence (target value). The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, Gradient Boosting, XGB classifier, and MLP classifier. Then, you will learn how to use sequential CNN and VGG16 models to detect and predict Covid-19 X-RAY using COVID-19 Xray Dataset (Train & Test Sets) provided in Kaggle. The folder itself consists of two subfolders: test and train. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, training loss, and training accuracy. WORKSHOP 10: In this workshop, you will learn how to use Scikit-Learn, Keras, TensorFlow, NumPy, Pandas, Seaborn, and other libraries to perform analyzing and predicting stroke using dataset provided in Kaggle. The dataset consists of attribute information: id: unique identifier; gender: "Male", "Female" or "Other"; age: age of the patient; hypertension: 0 if the patient doesn't have hypertension, 1 if the patient has hypertension; heart_disease: 0 if the patient doesn't have any heart diseases, 1 if the patient has a heart disease; ever_married: "No" or "Yes"; work_type: "children", "Govt_jov", "Never_worked", "Private" or "Self-employed"; Residence_type: "Rural" or "Urban"; avg_glucose_level: average glucose level in blood; bmi: body mass index; smoking_status: "formerly smoked", "never smoked", "smokes" or "Unknown"; and stroke: 1 if the patient had a stroke or 0 if not. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performace of the model, scalability of the model, training loss, and training accuracy. WORKSHOP 11: In this workshop, you will learn how to use Scikit-Learn, Keras, TensorFlow, NumPy, Pandas, Seaborn, and other libraries to perform classifying and predicting Hepatitis C using dataset provided by UCI Machine Learning Repository. All attributes in dataset except Category and Sex are numerical. Attributes 1 to 4 refer to the data of the patient: X (Patient ID/No.), Category (diagnosis) (values: '0=Blood Donor', '0s=suspect Blood Donor', '1=Hepatitis', '2=Fibrosis', '3=Cirrhosis'), Age (in years), Sex (f,m), ALB, ALP, ALT, AST, BIL, CHE, CHOL, CREA, GGT, and PROT. The target attribute for classification is Category (2): blood donors vs. Hepatitis C patients (including its progress ('just' Hepatitis C, Fibrosis, Cirrhosis). The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and ANN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performace of the model, scalability of the model, training loss, and training accuracy.
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 1978
Book Description
WORKSHOP 1: In this workshop, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to implement deep learning on recognizing traffic signs using GTSRB dataset, detecting brain tumor using Brain Image MRI dataset, classifying gender, and recognizing facial expression using FER2013 dataset In Chapter 1, you will learn to create GUI applications to display line graph using PyQt. You will also learn how to display image and its histogram. In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, Pandas, NumPy and other libraries to perform prediction on handwritten digits using MNIST dataset with PyQt. You will build a GUI application for this purpose. In Chapter 3, you will learn how to perform recognizing traffic signs using GTSRB dataset from Kaggle. There are several different types of traffic signs like speed limits, no entry, traffic signals, turn left or right, children crossing, no passing of heavy vehicles, etc. Traffic signs classification is the process of identifying which class a traffic sign belongs to. In this Python project, you will build a deep neural network model that can classify traffic signs in image into different categories. With this model, you will be able to read and understand traffic signs which are a very important task for all autonomous vehicles. You will build a GUI application for this purpose. In Chapter 4, you will learn how to perform detecting brain tumor using Brain Image MRI dataset provided by Kaggle (https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection) using CNN model. You will build a GUI application for this purpose. In Chapter 5, you will learn how to perform classifying gender using dataset provided by Kaggle (https://www.kaggle.com/cashutosh/gender-classification-dataset) using MobileNetV2 and CNN models. You will build a GUI application for this purpose. In Chapter 6, you will learn how to perform recognizing facial expression using FER2013 dataset provided by Kaggle (https://www.kaggle.com/nicolejyt/facialexpressionrecognition) using CNN model. You will also build a GUI application for this purpose. WORKSHOP 2: In this workshop, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to implement deep learning on classifying fruits, classifying cats/dogs, detecting furnitures, and classifying fashion. In Chapter 1, you will learn to create GUI applications to display line graph using PyQt. You will also learn how to display image and its histogram. Then, you will learn how to use OpenCV, NumPy, and other libraries to perform feature extraction with Python GUI (PyQt). The feature detection techniques used in this chapter are Harris Corner Detection, Shi-Tomasi Corner Detector, and Scale-Invariant Feature Transform (SIFT). In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying fruits using Fruits 360 dataset provided by Kaggle (https://www.kaggle.com/moltean/fruits/code) using Transfer Learning and CNN models. You will build a GUI application for this purpose. In Chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying cats/dogs using dataset provided by Kaggle (https://www.kaggle.com/chetankv/dogs-cats-images) using Using CNN with Data Generator. You will build a GUI application for this purpose. In Chapter 4, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting furnitures using Furniture Detector dataset provided by Kaggle (https://www.kaggle.com/akkithetechie/furniture-detector) using VGG16 model. You will build a GUI application for this purpose. In Chapter 5, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying fashion using Fashion MNIST dataset provided by Kaggle (https://www.kaggle.com/zalando-research/fashionmnist/code) using CNN model. You will build a GUI application for this purpose. WORKSHOP 3: In this workshop, you will implement deep learning on detecting vehicle license plates, recognizing sign language, and detecting surface crack using TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries. In Chapter 1, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting vehicle license plates using Car License Plate Detection dataset provided by Kaggle (https://www.kaggle.com/andrewmvd/car-plate-detection/download). In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform sign language recognition using Sign Language Digits Dataset provided by Kaggle (https://www.kaggle.com/ardamavi/sign-language-digits-dataset/download). In Chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting surface crack using Surface Crack Detection provided by Kaggle (https://www.kaggle.com/arunrk7/surface-crack-detection/download). WORKSHOP 4: In this workshop, implement deep learning-based image classification on detecting face mask, classifying weather, and recognizing flower using TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries. In Chapter 1, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting face mask using Face Mask Detection Dataset provided by Kaggle (https://www.kaggle.com/omkargurav/face-mask-dataset/download). In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to classify weather using Multi-class Weather Dataset provided by Kaggle (https://www.kaggle.com/pratik2901/multiclass-weather-dataset/download). WORKSHOP 5: In this workshop, implement deep learning-based image classification on classifying monkey species, recognizing rock, paper, and scissor, and classify airplane, car, and ship using TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries. In Chapter 1, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to classify monkey species using 10 Monkey Species dataset provided by Kaggle (https://www.kaggle.com/slothkong/10-monkey-species/download). In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to recognize rock, paper, and scissor using 10 Monkey Species dataset provided by Kaggle (https://www.kaggle.com/sanikamal/rock-paper-scissors-dataset/download). WORKSHOP 6: In this worksshop, you will implement two data science projects using Scikit-Learn, Scipy, and other libraries with Python GUI. In Chapter 1, you will learn how to use Scikit-Learn, Scipy, and other libraries to perform how to predict traffic (number of vehicles) in four different junctions using Traffic Prediction Dataset provided by Kaggle (https://www.kaggle.com/fedesoriano/traffic-prediction-dataset/download). This dataset contains 48.1k (48120) observations of the number of vehicles each hour in four different junctions: 1) DateTime; 2) Juction; 3) Vehicles; and 4) ID. In Chapter 2, you will learn how to use Scikit-Learn, NumPy, Pandas, and other libraries to perform how to analyze and predict heart attack using Heart Attack Analysis & Prediction Dataset provided by Kaggle (https://www.kaggle.com/rashikrahmanpritom/heart-attack-analysis-prediction-dataset/download). WORKSHOP 7: In this workshop, you will implement two data science projects using Scikit-Learn, Scipy, and other libraries with Python GUI. In Project 1, you will learn how to use Scikit-Learn, NumPy, Pandas, Seaborn, and other libraries to perform how to predict early stage diabetes using Early Stage Diabetes Risk Prediction Dataset provided by Kaggle (https://www.kaggle.com/ishandutta/early-stage-diabetes-risk-prediction-dataset/download). This dataset contains the sign and symptpom data of newly diabetic or would be diabetic patient. This has been collected using direct questionnaires from the patients of Sylhet Diabetes Hospital in Sylhet, Bangladesh and approved by a doctor. You will develop a GUI using PyQt5 to plot distribution of features, feature importance, cross validation score, and prediced values versus true values. The machine learning models used in this project are Adaboost, Random Forest, Gradient Boosting, Logistic Regression, and Support Vector Machine. In Project 2, you will learn how to use Scikit-Learn, NumPy, Pandas, and other libraries to perform how to analyze and predict breast cancer using Breast Cancer Prediction Dataset provided by Kaggle (https://www.kaggle.com/merishnasuwal/breast-cancer-prediction-dataset/download). Worldwide, breast cancer is the most common type of cancer in women and the second highest in terms of mortality rates.Diagnosis of breast cancer is performed when an abnormal lump is found (from self-examination or x-ray) or a tiny speck of calcium is seen (on an x-ray). After a suspicious lump is found, the doctor will conduct a diagnosis to determine whether it is cancerous and, if so, whether it has spread to other parts of the body. This breast cancer dataset was obtained from the University of Wisconsin Hospitals, Madison from Dr. William H. Wolberg. You will develop a GUI using PyQt5 to plot distribution of features, pairwise relationship, test scores, prediced values versus true values, confusion matrix, and decision boundary. The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, and Support Vector Machine. WORKSHOP 8: In this workshop, you will learn how to use Scikit-Learn, TensorFlow, Keras, NumPy, Pandas, Seaborn, and other libraries to implement brain tumor classification and detection with machine learning using Brain Tumor dataset provided by Kaggle. This dataset contains five first order features: Mean (the contribution of individual pixel intensity for the entire image), Variance (used to find how each pixel varies from the neighboring pixel 0, Standard Deviation (the deviation of measured Values or the data from its mean), Skewness (measures of symmetry), and Kurtosis (describes the peak of e.g. a frequency distribution). It also contains eight second order features: Contrast, Energy, ASM (Angular second moment), Entropy, Homogeneity, Dissimilarity, Correlation, and Coarseness. The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, and Support Vector Machine. The deep learning models used in this project are MobileNet and ResNet50. In this project, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, training loss, and training accuracy. WORKSHOP 9: In this workshop, you will learn how to use Scikit-Learn, Keras, TensorFlow, NumPy, Pandas, Seaborn, and other libraries to perform COVID-19 Epitope Prediction using COVID-19/SARS B-cell Epitope Prediction dataset provided in Kaggle. All of three datasets consists of information of protein and peptide: parent_protein_id : parent protein ID; protein_seq : parent protein sequence; start_position : start position of peptide; end_position : end position of peptide; peptide_seq : peptide sequence; chou_fasman : peptide feature; emini : peptide feature, relative surface accessibility; kolaskar_tongaonkar : peptide feature, antigenicity; parker : peptide feature, hydrophobicity; isoelectric_point : protein feature; aromacity: protein feature; hydrophobicity : protein feature; stability : protein feature; and target : antibody valence (target value). The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, Gradient Boosting, XGB classifier, and MLP classifier. Then, you will learn how to use sequential CNN and VGG16 models to detect and predict Covid-19 X-RAY using COVID-19 Xray Dataset (Train & Test Sets) provided in Kaggle. The folder itself consists of two subfolders: test and train. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, training loss, and training accuracy. WORKSHOP 10: In this workshop, you will learn how to use Scikit-Learn, Keras, TensorFlow, NumPy, Pandas, Seaborn, and other libraries to perform analyzing and predicting stroke using dataset provided in Kaggle. The dataset consists of attribute information: id: unique identifier; gender: "Male", "Female" or "Other"; age: age of the patient; hypertension: 0 if the patient doesn't have hypertension, 1 if the patient has hypertension; heart_disease: 0 if the patient doesn't have any heart diseases, 1 if the patient has a heart disease; ever_married: "No" or "Yes"; work_type: "children", "Govt_jov", "Never_worked", "Private" or "Self-employed"; Residence_type: "Rural" or "Urban"; avg_glucose_level: average glucose level in blood; bmi: body mass index; smoking_status: "formerly smoked", "never smoked", "smokes" or "Unknown"; and stroke: 1 if the patient had a stroke or 0 if not. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performace of the model, scalability of the model, training loss, and training accuracy. WORKSHOP 11: In this workshop, you will learn how to use Scikit-Learn, Keras, TensorFlow, NumPy, Pandas, Seaborn, and other libraries to perform classifying and predicting Hepatitis C using dataset provided by UCI Machine Learning Repository. All attributes in dataset except Category and Sex are numerical. Attributes 1 to 4 refer to the data of the patient: X (Patient ID/No.), Category (diagnosis) (values: '0=Blood Donor', '0s=suspect Blood Donor', '1=Hepatitis', '2=Fibrosis', '3=Cirrhosis'), Age (in years), Sex (f,m), ALB, ALP, ALT, AST, BIL, CHE, CHOL, CREA, GGT, and PROT. The target attribute for classification is Category (2): blood donors vs. Hepatitis C patients (including its progress ('just' Hepatitis C, Fibrosis, Cirrhosis). The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and ANN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performace of the model, scalability of the model, training loss, and training accuracy.
The Applied Data Science Workshop On Medical Datasets Using Machine Learning and Deep Learning with Python GUI
Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 1575
Book Description
Workshop 1: Heart Failure Analysis and Prediction Using Scikit-Learn, Keras, and TensorFlow with Python GUI Cardiovascular diseases (CVDs) are the number 1 cause of death globally taking an estimated 17.9 million lives each year, which accounts for 31% of all deaths worldwide. Heart failure is a common event caused by CVDs and this dataset contains 12 features that can be used to predict mortality by heart failure. People with cardiovascular disease or who are at high cardiovascular risk (due to the presence of one or more risk factors such as hypertension, diabetes, hyperlipidaemia or already established disease) need early detection and management wherein a machine learning models can be of great help. Dataset used in this project is from Davide Chicco, Giuseppe Jurman. Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone. BMC Medical Informatics and Decision Making 20, 16 (2020). Attribute information in the dataset are as follows: age: Age; anaemia: Decrease of red blood cells or hemoglobin (boolean); creatinine_phosphokinase: Level of the CPK enzyme in the blood (mcg/L); diabetes: If the patient has diabetes (boolean); ejection_fraction: Percentage of blood leaving the heart at each contraction (percentage); high_blood_pressure: If the patient has hypertension (boolean); platelets: Platelets in the blood (kiloplatelets/mL); serum_creatinine: Level of serum creatinine in the blood (mg/dL); serum_sodium: Level of serum sodium in the blood (mEq/L); sex: Woman or man (binary); smoking: If the patient smokes or not (boolean); time: Follow-up period (days); and DEATH_EVENT: If the patient deceased during the follow-up period (boolean). The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performace of the model, scalability of the model, training loss, and training accuracy. WORKSHOP 2: Cervical Cancer Classification and Prediction Using Machine Learning and Deep Learning with Python GUI About 11,000 new cases of invasive cervical cancer are diagnosed each year in the U.S. However, the number of new cervical cancer cases has been declining steadily over the past decades. Although it is the most preventable type of cancer, each year cervical cancer kills about 4,000 women in the U.S. and about 300,000 women worldwide. Numerous studies report that high poverty levels are linked with low screening rates. In addition, lack of health insurance, limited transportation, and language difficulties hinder a poor woman’s access to screening services. Human papilloma virus (HPV) is the main risk factor for cervical cancer. In adults, the most important risk factor for HPV is sexual activity with an infected person. Women most at risk for cervical cancer are those with a history of multiple sexual partners, sexual intercourse at age 17 years or younger, or both. A woman who has never been sexually active has a very low risk for developing cervical cancer. Sexual activity with multiple partners increases the likelihood of many other sexually transmitted infections (chlamydia, gonorrhea, syphilis). Studies have found an association between chlamydia and cervical cancer risk, including the possibility that chlamydia may prolong HPV infection. Therefore, early detection of cervical cancer using machine and deep learning models can be of great help. The dataset used in this project is obtained from UCI Repository and kindly acknowledged. This file contains a List of Risk Factors for Cervical Cancer leading to a Biopsy Examination. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performace of the model, scalability of the model, training loss, and training accuracy. WORKSHOP 3: Chronic Kidney Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI Chronic kidney disease is the longstanding disease of the kidneys leading to renal failure. The kidneys filter waste and excess fluid from the blood. As kidneys fail, waste builds up. Symptoms develop slowly and aren't specific to the disease. Some people have no symptoms at all and are diagnosed by a lab test. Medication helps manage symptoms. In later stages, filtering the blood with a machine (dialysis) or a transplant may be required The dataset used in this project was taken over a 2-month period in India with 25 features (eg, red blood cell count, white blood cell count, etc). The target is the 'classification', which is either 'ckd' or 'notckd' - ckd=chronic kidney disease. It contains measures of 24 features for 400 people. Quite a lot of features for just 400 samples. There are 14 categorical features, while 10 are numerical. The dataset needs cleaning: in that it has NaNs and the numeric features need to be forced to floats. Attribute Information: Age(numerical) age in years; Blood Pressure(numerical) bp in mm/Hg; Specific Gravity(categorical) sg - (1.005,1.010,1.015,1.020,1.025); Albumin(categorical) al - (0,1,2,3,4,5); Sugar(categorical) su - (0,1,2,3,4,5); Red Blood Cells(categorical) rbc - (normal,abnormal); Pus Cell (categorical) pc - (normal,abnormal); Pus Cell clumps(categorical) pcc - (present, notpresent); Bacteria(categorical) ba - (present,notpresent); Blood Glucose Random(numerical) bgr in mgs/dl; Blood Urea(numerical) bu in mgs/dl; Serum Creatinine(numerical) sc in mgs/dl; Sodium(numerical) sod in mEq/L; Potassium(numerical) pot in mEq/L; Hemoglobin(numerical) hemo in gms; Packed Cell Volume(numerical); White Blood Cell Count(numerical) wc in cells/cumm; Red Blood Cell Count(numerical) rc in millions/cmm; Hypertension(categorical) htn - (yes,no); Diabetes Mellitus(categorical) dm - (yes,no); Coronary Artery Disease(categorical) cad - (yes,no); Appetite(categorical) appet - (good,poor); Pedal Edema(categorical) pe - (yes,no); Anemia(categorical) ane - (yes,no); and Class (categorical) class - (ckd,notckd). The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performace of the model, scalability of the model, training loss, and training accuracy. WORKSHOP 4: Lung Cancer Classification and Prediction Using Machine Learning and Deep Learning with Python GUI The effectiveness of cancer prediction system helps the people to know their cancer risk with low cost and it also helps the people to take the appropriate decision based on their cancer risk status. The data is collected from the website online lung cancer prediction system. Total number of attributes in the dataset is 16, while number of instances is 309. Following are attribute information of dataset: Gender: M(male), F(female); Age: Age of the patient; Smoking: YES=2 , NO=1; Yellow fingers: YES=2 , NO=1; Anxiety: YES=2 , NO=1; Peer_pressure: YES=2 , NO=1; Chronic Disease: YES=2 , NO=1; Fatigue: YES=2 , NO=1; Allergy: YES=2 , NO=1; Wheezing: YES=2 , NO=1; Alcohol: YES=2 , NO=1; Coughing: YES=2 , NO=1; Shortness of Breath: YES=2 , NO=1; Swallowing Difficulty: YES=2 , NO=1; Chest pain: YES=2 , NO=1; and Lung Cancer: YES , NO. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performace of the model, scalability of the model, training loss, and training accuracy. WORKSHOP 5: Alzheimer’s Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI Alzheimer's is a type of dementia that causes problems with memory, thinking and behavior. Symptoms usually develop slowly and get worse over time, becoming severe enough to interfere with daily tasks. Alzheimer's is not a normal part of aging. The greatest known risk factor is increasing age, and the majority of people with Alzheimer's are 65 and older. But Alzheimer's is not just a disease of old age. Approximately 200,000 Americans under the age of 65 have younger-onset Alzheimer’s disease (also known as early-onset Alzheimer’s). The dataset consists of a longitudinal MRI data of 374 subjects aged 60 to 96. Each subject was scanned at least once. Everyone is right-handed. 206 of the subjects were grouped as 'Nondemented' throughout the study. 107 of the subjects were grouped as 'Demented' at the time of their initial visits and remained so throughout the study. 14 subjects were grouped as 'Nondemented' at the time of their initial visit and were subsequently characterized as 'Demented' at a later visit. These fall under the 'Converted' category. Following are some important features in the dataset: EDUC:Years of Education; SES: Socioeconomic Status; MMSE: Mini Mental State Examination; CDR: Clinical Dementia Rating; eTIV: Estimated Total Intracranial Volume; nWBV: Normalize Whole Brain Volume; and ASF: Atlas Scaling Factor. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. WORKSHOP 6: Parkinson Classification and Prediction Using Machine Learning and Deep Learning with Python GUI The dataset was created by Max Little of the University of Oxford, in collaboration with the National Centre for Voice and Speech, Denver, Colorado, who recorded the speech signals. The original study published the feature extraction methods for general voice disorders. This dataset is composed of a range of biomedical voice measurements from 31 people, 23 with Parkinson's disease (PD). Each column in the table is a particular voice measure, and each row corresponds one of 195 voice recording from these individuals ("name" column). The main aim of the data is to discriminate healthy people from those with PD, according to "status" column which is set to 0 for healthy and 1 for PD. The data is in ASCII CSV format. The rows of the CSV file contain an instance corresponding to one voice recording. There are around six recordings per patient, the name of the patient is identified in the first column. Attribute information of this dataset are as follows: name - ASCII subject name and recording number; MDVP:Fo(Hz) - Average vocal fundamental frequency; MDVP:Fhi(Hz) - Maximum vocal fundamental frequency; MDVP:Flo(Hz) - Minimum vocal fundamental frequency; MDVP:Jitter(%); MDVP:Jitter(Abs); MDVP:RAP; MDVP:PPQ; Jitter:DDP – Several measures of variation in fundamental frequency; MDVP:Shimmer; MDVP:Shimmer(dB); Shimmer:APQ3; Shimmer:APQ5; MDVP:APQ; Shimmer:DDA - Several measures of variation in amplitude; NHR; HNR - Two measures of ratio of noise to tonal components in the voice; status - Health status of the subject (one) - Parkinson's, (zero) – healthy; RPDE,D2 - Two nonlinear dynamical complexity measures; DFA - Signal fractal scaling exponent; and spread1,spread2,PPE - Three nonlinear measures of fundamental frequency variation. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. WORKSHOP 7: Liver Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI Patients with Liver disease have been continuously increasing because of excessive consumption of alcohol, inhale of harmful gases, intake of contaminated food, pickles and drugs. This dataset was used to evaluate prediction algorithms in an effort to reduce burden on doctors. This dataset contains 416 liver patient records and 167 non liver patient records collected from North East of Andhra Pradesh, India. The "Dataset" column is a class label used to divide groups into liver patient (liver disease) or not (no disease). This data set contains 441 male patient records and 142 female patient records. Any patient whose age exceeded 89 is listed as being of age "90". Columns in the dataset: Age of the patient; Gender of the patient; Total Bilirubin; Direct Bilirubin; Alkaline Phosphotase; Alamine Aminotransferase; Aspartate Aminotransferase; Total Protiens; Albumin; Albumin and Globulin Ratio; and Dataset: field used to split the data into two sets (patient with liver disease, or no disease). The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy.
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 1575
Book Description
Workshop 1: Heart Failure Analysis and Prediction Using Scikit-Learn, Keras, and TensorFlow with Python GUI Cardiovascular diseases (CVDs) are the number 1 cause of death globally taking an estimated 17.9 million lives each year, which accounts for 31% of all deaths worldwide. Heart failure is a common event caused by CVDs and this dataset contains 12 features that can be used to predict mortality by heart failure. People with cardiovascular disease or who are at high cardiovascular risk (due to the presence of one or more risk factors such as hypertension, diabetes, hyperlipidaemia or already established disease) need early detection and management wherein a machine learning models can be of great help. Dataset used in this project is from Davide Chicco, Giuseppe Jurman. Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone. BMC Medical Informatics and Decision Making 20, 16 (2020). Attribute information in the dataset are as follows: age: Age; anaemia: Decrease of red blood cells or hemoglobin (boolean); creatinine_phosphokinase: Level of the CPK enzyme in the blood (mcg/L); diabetes: If the patient has diabetes (boolean); ejection_fraction: Percentage of blood leaving the heart at each contraction (percentage); high_blood_pressure: If the patient has hypertension (boolean); platelets: Platelets in the blood (kiloplatelets/mL); serum_creatinine: Level of serum creatinine in the blood (mg/dL); serum_sodium: Level of serum sodium in the blood (mEq/L); sex: Woman or man (binary); smoking: If the patient smokes or not (boolean); time: Follow-up period (days); and DEATH_EVENT: If the patient deceased during the follow-up period (boolean). The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performace of the model, scalability of the model, training loss, and training accuracy. WORKSHOP 2: Cervical Cancer Classification and Prediction Using Machine Learning and Deep Learning with Python GUI About 11,000 new cases of invasive cervical cancer are diagnosed each year in the U.S. However, the number of new cervical cancer cases has been declining steadily over the past decades. Although it is the most preventable type of cancer, each year cervical cancer kills about 4,000 women in the U.S. and about 300,000 women worldwide. Numerous studies report that high poverty levels are linked with low screening rates. In addition, lack of health insurance, limited transportation, and language difficulties hinder a poor woman’s access to screening services. Human papilloma virus (HPV) is the main risk factor for cervical cancer. In adults, the most important risk factor for HPV is sexual activity with an infected person. Women most at risk for cervical cancer are those with a history of multiple sexual partners, sexual intercourse at age 17 years or younger, or both. A woman who has never been sexually active has a very low risk for developing cervical cancer. Sexual activity with multiple partners increases the likelihood of many other sexually transmitted infections (chlamydia, gonorrhea, syphilis). Studies have found an association between chlamydia and cervical cancer risk, including the possibility that chlamydia may prolong HPV infection. Therefore, early detection of cervical cancer using machine and deep learning models can be of great help. The dataset used in this project is obtained from UCI Repository and kindly acknowledged. This file contains a List of Risk Factors for Cervical Cancer leading to a Biopsy Examination. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performace of the model, scalability of the model, training loss, and training accuracy. WORKSHOP 3: Chronic Kidney Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI Chronic kidney disease is the longstanding disease of the kidneys leading to renal failure. The kidneys filter waste and excess fluid from the blood. As kidneys fail, waste builds up. Symptoms develop slowly and aren't specific to the disease. Some people have no symptoms at all and are diagnosed by a lab test. Medication helps manage symptoms. In later stages, filtering the blood with a machine (dialysis) or a transplant may be required The dataset used in this project was taken over a 2-month period in India with 25 features (eg, red blood cell count, white blood cell count, etc). The target is the 'classification', which is either 'ckd' or 'notckd' - ckd=chronic kidney disease. It contains measures of 24 features for 400 people. Quite a lot of features for just 400 samples. There are 14 categorical features, while 10 are numerical. The dataset needs cleaning: in that it has NaNs and the numeric features need to be forced to floats. Attribute Information: Age(numerical) age in years; Blood Pressure(numerical) bp in mm/Hg; Specific Gravity(categorical) sg - (1.005,1.010,1.015,1.020,1.025); Albumin(categorical) al - (0,1,2,3,4,5); Sugar(categorical) su - (0,1,2,3,4,5); Red Blood Cells(categorical) rbc - (normal,abnormal); Pus Cell (categorical) pc - (normal,abnormal); Pus Cell clumps(categorical) pcc - (present, notpresent); Bacteria(categorical) ba - (present,notpresent); Blood Glucose Random(numerical) bgr in mgs/dl; Blood Urea(numerical) bu in mgs/dl; Serum Creatinine(numerical) sc in mgs/dl; Sodium(numerical) sod in mEq/L; Potassium(numerical) pot in mEq/L; Hemoglobin(numerical) hemo in gms; Packed Cell Volume(numerical); White Blood Cell Count(numerical) wc in cells/cumm; Red Blood Cell Count(numerical) rc in millions/cmm; Hypertension(categorical) htn - (yes,no); Diabetes Mellitus(categorical) dm - (yes,no); Coronary Artery Disease(categorical) cad - (yes,no); Appetite(categorical) appet - (good,poor); Pedal Edema(categorical) pe - (yes,no); Anemia(categorical) ane - (yes,no); and Class (categorical) class - (ckd,notckd). The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performace of the model, scalability of the model, training loss, and training accuracy. WORKSHOP 4: Lung Cancer Classification and Prediction Using Machine Learning and Deep Learning with Python GUI The effectiveness of cancer prediction system helps the people to know their cancer risk with low cost and it also helps the people to take the appropriate decision based on their cancer risk status. The data is collected from the website online lung cancer prediction system. Total number of attributes in the dataset is 16, while number of instances is 309. Following are attribute information of dataset: Gender: M(male), F(female); Age: Age of the patient; Smoking: YES=2 , NO=1; Yellow fingers: YES=2 , NO=1; Anxiety: YES=2 , NO=1; Peer_pressure: YES=2 , NO=1; Chronic Disease: YES=2 , NO=1; Fatigue: YES=2 , NO=1; Allergy: YES=2 , NO=1; Wheezing: YES=2 , NO=1; Alcohol: YES=2 , NO=1; Coughing: YES=2 , NO=1; Shortness of Breath: YES=2 , NO=1; Swallowing Difficulty: YES=2 , NO=1; Chest pain: YES=2 , NO=1; and Lung Cancer: YES , NO. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performace of the model, scalability of the model, training loss, and training accuracy. WORKSHOP 5: Alzheimer’s Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI Alzheimer's is a type of dementia that causes problems with memory, thinking and behavior. Symptoms usually develop slowly and get worse over time, becoming severe enough to interfere with daily tasks. Alzheimer's is not a normal part of aging. The greatest known risk factor is increasing age, and the majority of people with Alzheimer's are 65 and older. But Alzheimer's is not just a disease of old age. Approximately 200,000 Americans under the age of 65 have younger-onset Alzheimer’s disease (also known as early-onset Alzheimer’s). The dataset consists of a longitudinal MRI data of 374 subjects aged 60 to 96. Each subject was scanned at least once. Everyone is right-handed. 206 of the subjects were grouped as 'Nondemented' throughout the study. 107 of the subjects were grouped as 'Demented' at the time of their initial visits and remained so throughout the study. 14 subjects were grouped as 'Nondemented' at the time of their initial visit and were subsequently characterized as 'Demented' at a later visit. These fall under the 'Converted' category. Following are some important features in the dataset: EDUC:Years of Education; SES: Socioeconomic Status; MMSE: Mini Mental State Examination; CDR: Clinical Dementia Rating; eTIV: Estimated Total Intracranial Volume; nWBV: Normalize Whole Brain Volume; and ASF: Atlas Scaling Factor. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. WORKSHOP 6: Parkinson Classification and Prediction Using Machine Learning and Deep Learning with Python GUI The dataset was created by Max Little of the University of Oxford, in collaboration with the National Centre for Voice and Speech, Denver, Colorado, who recorded the speech signals. The original study published the feature extraction methods for general voice disorders. This dataset is composed of a range of biomedical voice measurements from 31 people, 23 with Parkinson's disease (PD). Each column in the table is a particular voice measure, and each row corresponds one of 195 voice recording from these individuals ("name" column). The main aim of the data is to discriminate healthy people from those with PD, according to "status" column which is set to 0 for healthy and 1 for PD. The data is in ASCII CSV format. The rows of the CSV file contain an instance corresponding to one voice recording. There are around six recordings per patient, the name of the patient is identified in the first column. Attribute information of this dataset are as follows: name - ASCII subject name and recording number; MDVP:Fo(Hz) - Average vocal fundamental frequency; MDVP:Fhi(Hz) - Maximum vocal fundamental frequency; MDVP:Flo(Hz) - Minimum vocal fundamental frequency; MDVP:Jitter(%); MDVP:Jitter(Abs); MDVP:RAP; MDVP:PPQ; Jitter:DDP – Several measures of variation in fundamental frequency; MDVP:Shimmer; MDVP:Shimmer(dB); Shimmer:APQ3; Shimmer:APQ5; MDVP:APQ; Shimmer:DDA - Several measures of variation in amplitude; NHR; HNR - Two measures of ratio of noise to tonal components in the voice; status - Health status of the subject (one) - Parkinson's, (zero) – healthy; RPDE,D2 - Two nonlinear dynamical complexity measures; DFA - Signal fractal scaling exponent; and spread1,spread2,PPE - Three nonlinear measures of fundamental frequency variation. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. WORKSHOP 7: Liver Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI Patients with Liver disease have been continuously increasing because of excessive consumption of alcohol, inhale of harmful gases, intake of contaminated food, pickles and drugs. This dataset was used to evaluate prediction algorithms in an effort to reduce burden on doctors. This dataset contains 416 liver patient records and 167 non liver patient records collected from North East of Andhra Pradesh, India. The "Dataset" column is a class label used to divide groups into liver patient (liver disease) or not (no disease). This data set contains 441 male patient records and 142 female patient records. Any patient whose age exceeded 89 is listed as being of age "90". Columns in the dataset: Age of the patient; Gender of the patient; Total Bilirubin; Direct Bilirubin; Alkaline Phosphotase; Alamine Aminotransferase; Aspartate Aminotransferase; Total Protiens; Albumin; Albumin and Globulin Ratio; and Dataset: field used to split the data into two sets (patient with liver disease, or no disease). The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy.
Data Analytics and Applications of the Wearable Sensors in Healthcare
Author: Shabbir Syed-Abdul
Publisher: MDPI
ISBN: 3039363506
Category : Medical
Languages : en
Pages : 498
Book Description
This book provides a collection of comprehensive research articles on data analytics and applications of wearable devices in healthcare. This Special Issue presents 28 research studies from 137 authors representing 37 institutions from 19 countries. To facilitate the understanding of the research articles, we have organized the book to show various aspects covered in this field, such as eHealth, technology-integrated research, prediction models, rehabilitation studies, prototype systems, community health studies, ergonomics design systems, technology acceptance model evaluation studies, telemonitoring systems, warning systems, application of sensors in sports studies, clinical systems, feasibility studies, geographical location based systems, tracking systems, observational studies, risk assessment studies, human activity recognition systems, impact measurement systems, and a systematic review. We would like to take this opportunity to invite high quality research articles for our next Special Issue entitled “Digital Health and Smart Sensors for Better Management of Cancer and Chronic Diseases” as a part of Sensors journal.
Publisher: MDPI
ISBN: 3039363506
Category : Medical
Languages : en
Pages : 498
Book Description
This book provides a collection of comprehensive research articles on data analytics and applications of wearable devices in healthcare. This Special Issue presents 28 research studies from 137 authors representing 37 institutions from 19 countries. To facilitate the understanding of the research articles, we have organized the book to show various aspects covered in this field, such as eHealth, technology-integrated research, prediction models, rehabilitation studies, prototype systems, community health studies, ergonomics design systems, technology acceptance model evaluation studies, telemonitoring systems, warning systems, application of sensors in sports studies, clinical systems, feasibility studies, geographical location based systems, tracking systems, observational studies, risk assessment studies, human activity recognition systems, impact measurement systems, and a systematic review. We would like to take this opportunity to invite high quality research articles for our next Special Issue entitled “Digital Health and Smart Sensors for Better Management of Cancer and Chronic Diseases” as a part of Sensors journal.
COVID-19: Analysis, Classification, and Detection Using Scikit-Learn, Keras, and TensorFlow with Python GUI
Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 286
Book Description
In this comprehensive project, "COVID-19: Analysis, Classification, and Detection Using Scikit-Learn, Keras, and TensorFlow with Python GUI," the primary objective is to leverage various machine learning and deep learning techniques to analyze and classify COVID-19 cases based on numerical data and medical image data. The project begins by exploring the dataset, gaining insights into its structure and content. This initial data exploration aids in understanding the distribution of categorized features, providing valuable context for subsequent analysis. With insights gained from data exploration, the project delves into predictive modeling using machine learning. It employs Scikit-Learn to build and fine-tune predictive models, harnessing grid search for hyperparameter optimization. This meticulous process ensures that the machine learning models, such as Naïve Bayes, K-Nearest Neighbors, Decision Trees, Random Forests, Gradient Boosting, Extreme Gradient Boosting, Multi-Layer Perceptron, AdaBoost, and Logistic Regression, are optimized to accurately predict the risk of COVID-19 based on the input features. Transitioning to the realm of deep learning, the project employs Convolutional Neural Networks (CNNs) to perform intricate image classification tasks. Leveraging Keras and TensorFlow, the CNN architecture is meticulously crafted, comprising convolutional and pooling layers, dropout regularization, and dense layers. The project also extends its deep learning capabilities by utilizing the VGG16 pre-trained model, harnessing its powerful feature extraction capabilities for COVID-19 image classification. To gauge the effectiveness of the trained models, an array of performance metrics is utilized. In this project, a range of metrics are used to evaluate the performance of machine learning and deep learning models employed for COVID-19 classification. These metrics include Accuracy, which measures the overall correctness of predictions; Precision, emphasizing the accuracy of positive predictions; Recall (Sensitivity), assessing the model's ability to identify positive instances; and F1-Score, a balanced measure of accuracy. The Mean Squared Error (MSE) quantifies the magnitude of errors in regression tasks, while the Confusion Matrix summarizes classification results by showing counts of true positives, true negatives, false positives, and false negatives. These metrics together provide a comprehensive understanding of model performance. They help gauge the model's accuracy, the balance between precision and recall, and its proficiency in classifying both positive and negative instances. In the medical context of COVID-19 classification, these metrics play a vital role in evaluating the models' reliability and effectiveness in real-world applications. The project further enriches its analytical capabilities by developing an interactive Python GUI. This graphical user interface streamlines the user experience, facilitating data input, model training, and prediction. Users are empowered to input medical images for classification, leveraging the trained machine learning and deep learning models to assess COVID-19 risk. The culmination of the project lies in the accurate prediction of COVID-19 risk through a combined approach of machine learning and deep learning techniques. The Python GUI using PyQt5 provides a user-friendly platform for clinicians and researchers to interact with the models, fostering informed decision-making based on reliable and data-driven predictions. In conclusion, this project represents a comprehensive endeavor to harness the power of machine learning and deep learning for the vital task of COVID-19 classification. Through rigorous data exploration, model training, and performance evaluation, the project yields a robust framework for risk prediction, contributing to the broader efforts to combat the ongoing pandemic.
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 286
Book Description
In this comprehensive project, "COVID-19: Analysis, Classification, and Detection Using Scikit-Learn, Keras, and TensorFlow with Python GUI," the primary objective is to leverage various machine learning and deep learning techniques to analyze and classify COVID-19 cases based on numerical data and medical image data. The project begins by exploring the dataset, gaining insights into its structure and content. This initial data exploration aids in understanding the distribution of categorized features, providing valuable context for subsequent analysis. With insights gained from data exploration, the project delves into predictive modeling using machine learning. It employs Scikit-Learn to build and fine-tune predictive models, harnessing grid search for hyperparameter optimization. This meticulous process ensures that the machine learning models, such as Naïve Bayes, K-Nearest Neighbors, Decision Trees, Random Forests, Gradient Boosting, Extreme Gradient Boosting, Multi-Layer Perceptron, AdaBoost, and Logistic Regression, are optimized to accurately predict the risk of COVID-19 based on the input features. Transitioning to the realm of deep learning, the project employs Convolutional Neural Networks (CNNs) to perform intricate image classification tasks. Leveraging Keras and TensorFlow, the CNN architecture is meticulously crafted, comprising convolutional and pooling layers, dropout regularization, and dense layers. The project also extends its deep learning capabilities by utilizing the VGG16 pre-trained model, harnessing its powerful feature extraction capabilities for COVID-19 image classification. To gauge the effectiveness of the trained models, an array of performance metrics is utilized. In this project, a range of metrics are used to evaluate the performance of machine learning and deep learning models employed for COVID-19 classification. These metrics include Accuracy, which measures the overall correctness of predictions; Precision, emphasizing the accuracy of positive predictions; Recall (Sensitivity), assessing the model's ability to identify positive instances; and F1-Score, a balanced measure of accuracy. The Mean Squared Error (MSE) quantifies the magnitude of errors in regression tasks, while the Confusion Matrix summarizes classification results by showing counts of true positives, true negatives, false positives, and false negatives. These metrics together provide a comprehensive understanding of model performance. They help gauge the model's accuracy, the balance between precision and recall, and its proficiency in classifying both positive and negative instances. In the medical context of COVID-19 classification, these metrics play a vital role in evaluating the models' reliability and effectiveness in real-world applications. The project further enriches its analytical capabilities by developing an interactive Python GUI. This graphical user interface streamlines the user experience, facilitating data input, model training, and prediction. Users are empowered to input medical images for classification, leveraging the trained machine learning and deep learning models to assess COVID-19 risk. The culmination of the project lies in the accurate prediction of COVID-19 risk through a combined approach of machine learning and deep learning techniques. The Python GUI using PyQt5 provides a user-friendly platform for clinicians and researchers to interact with the models, fostering informed decision-making based on reliable and data-driven predictions. In conclusion, this project represents a comprehensive endeavor to harness the power of machine learning and deep learning for the vital task of COVID-19 classification. Through rigorous data exploration, model training, and performance evaluation, the project yields a robust framework for risk prediction, contributing to the broader efforts to combat the ongoing pandemic.
Machine Learning with Health Care Perspective
Author: Vishal Jain
Publisher: Springer Nature
ISBN: 3030408507
Category : Technology & Engineering
Languages : en
Pages : 418
Book Description
This unique book introduces a variety of techniques designed to represent, enhance and empower multi-disciplinary and multi-institutional machine learning research in healthcare informatics. Providing a unique compendium of current and emerging machine learning paradigms for healthcare informatics, it reflects the diversity, complexity, and the depth and breadth of this multi-disciplinary area. Further, it describes techniques for applying machine learning within organizations and explains how to evaluate the efficacy, suitability, and efficiency of such applications. Featuring illustrative case studies, including how chronic disease is being redefined through patient-led data learning, the book offers a guided tour of machine learning algorithms, architecture design, and applications of learning in healthcare challenges.
Publisher: Springer Nature
ISBN: 3030408507
Category : Technology & Engineering
Languages : en
Pages : 418
Book Description
This unique book introduces a variety of techniques designed to represent, enhance and empower multi-disciplinary and multi-institutional machine learning research in healthcare informatics. Providing a unique compendium of current and emerging machine learning paradigms for healthcare informatics, it reflects the diversity, complexity, and the depth and breadth of this multi-disciplinary area. Further, it describes techniques for applying machine learning within organizations and explains how to evaluate the efficacy, suitability, and efficiency of such applications. Featuring illustrative case studies, including how chronic disease is being redefined through patient-led data learning, the book offers a guided tour of machine learning algorithms, architecture design, and applications of learning in healthcare challenges.
Machine Learning and Metaheuristics Algorithms, and Applications
Author: Sabu M. Thampi
Publisher: Springer Nature
ISBN: 9811543011
Category : Computers
Languages : en
Pages : 276
Book Description
This book constitutes the refereed proceedings of the First Symposium on Machine Learning and Metaheuristics Algorithms, and Applications, SoMMA 2019, held in Trivandrum, India, in December 2019. The 17 full papers and 6 short papers presented in this volume were thoroughly reviewed and selected from 53 qualified submissions. The papers cover such topics as machine learning, artificial intelligence, Internet of Things, modeling and simulation, disctibuted computing methodologies, computer graphics, etc.
Publisher: Springer Nature
ISBN: 9811543011
Category : Computers
Languages : en
Pages : 276
Book Description
This book constitutes the refereed proceedings of the First Symposium on Machine Learning and Metaheuristics Algorithms, and Applications, SoMMA 2019, held in Trivandrum, India, in December 2019. The 17 full papers and 6 short papers presented in this volume were thoroughly reviewed and selected from 53 qualified submissions. The papers cover such topics as machine learning, artificial intelligence, Internet of Things, modeling and simulation, disctibuted computing methodologies, computer graphics, etc.
Neural Approaches to Dynamics of Signal Exchanges
Author: Anna Esposito
Publisher: Springer Nature
ISBN: 9811389500
Category : Technology & Engineering
Languages : en
Pages : 523
Book Description
The book presents research that contributes to the development of intelligent dialog systems to simplify diverse aspects of everyday life, such as medical diagnosis and entertainment. Covering major thematic areas: machine learning and artificial neural networks; algorithms and models; and social and biometric data for applications in human–computer interfaces, it discusses processing of audio-visual signals for the detection of user-perceived states, the latest scientific discoveries in processing verbal (lexicon, syntax, and pragmatics), auditory (voice, intonation, vocal expressions) and visual signals (gestures, body language, facial expressions), as well as algorithms for detecting communication disorders, remote health-status monitoring, sentiment and affect analysis, social behaviors and engagement. Further, it examines neural and machine learning algorithms for the implementation of advanced telecommunication systems, communication with people with special needs, emotion modulation by computer contents, advanced sensors for tracking changes in real-life and automatic systems, as well as the development of advanced human–computer interfaces. The book does not focus on solving a particular problem, but instead describes the results of research that has positive effects in different fields and applications.
Publisher: Springer Nature
ISBN: 9811389500
Category : Technology & Engineering
Languages : en
Pages : 523
Book Description
The book presents research that contributes to the development of intelligent dialog systems to simplify diverse aspects of everyday life, such as medical diagnosis and entertainment. Covering major thematic areas: machine learning and artificial neural networks; algorithms and models; and social and biometric data for applications in human–computer interfaces, it discusses processing of audio-visual signals for the detection of user-perceived states, the latest scientific discoveries in processing verbal (lexicon, syntax, and pragmatics), auditory (voice, intonation, vocal expressions) and visual signals (gestures, body language, facial expressions), as well as algorithms for detecting communication disorders, remote health-status monitoring, sentiment and affect analysis, social behaviors and engagement. Further, it examines neural and machine learning algorithms for the implementation of advanced telecommunication systems, communication with people with special needs, emotion modulation by computer contents, advanced sensors for tracking changes in real-life and automatic systems, as well as the development of advanced human–computer interfaces. The book does not focus on solving a particular problem, but instead describes the results of research that has positive effects in different fields and applications.
Deep Learning and Parallel Computing Environment for Bioengineering Systems
Author: Arun Kumar Sangaiah
Publisher: Academic Press
ISBN: 0128172932
Category : Technology & Engineering
Languages : en
Pages : 282
Book Description
Deep Learning and Parallel Computing Environment for Bioengineering Systems delivers a significant forum for the technical advancement of deep learning in parallel computing environment across bio-engineering diversified domains and its applications. Pursuing an interdisciplinary approach, it focuses on methods used to identify and acquire valid, potentially useful knowledge sources. Managing the gathered knowledge and applying it to multiple domains including health care, social networks, mining, recommendation systems, image processing, pattern recognition and predictions using deep learning paradigms is the major strength of this book. This book integrates the core ideas of deep learning and its applications in bio engineering application domains, to be accessible to all scholars and academicians. The proposed techniques and concepts in this book can be extended in future to accommodate changing business organizations' needs as well as practitioners' innovative ideas. - Presents novel, in-depth research contributions from a methodological/application perspective in understanding the fusion of deep machine learning paradigms and their capabilities in solving a diverse range of problems - Illustrates the state-of-the-art and recent developments in the new theories and applications of deep learning approaches applied to parallel computing environment in bioengineering systems - Provides concepts and technologies that are successfully used in the implementation of today's intelligent data-centric critical systems and multi-media Cloud-Big data
Publisher: Academic Press
ISBN: 0128172932
Category : Technology & Engineering
Languages : en
Pages : 282
Book Description
Deep Learning and Parallel Computing Environment for Bioengineering Systems delivers a significant forum for the technical advancement of deep learning in parallel computing environment across bio-engineering diversified domains and its applications. Pursuing an interdisciplinary approach, it focuses on methods used to identify and acquire valid, potentially useful knowledge sources. Managing the gathered knowledge and applying it to multiple domains including health care, social networks, mining, recommendation systems, image processing, pattern recognition and predictions using deep learning paradigms is the major strength of this book. This book integrates the core ideas of deep learning and its applications in bio engineering application domains, to be accessible to all scholars and academicians. The proposed techniques and concepts in this book can be extended in future to accommodate changing business organizations' needs as well as practitioners' innovative ideas. - Presents novel, in-depth research contributions from a methodological/application perspective in understanding the fusion of deep machine learning paradigms and their capabilities in solving a diverse range of problems - Illustrates the state-of-the-art and recent developments in the new theories and applications of deep learning approaches applied to parallel computing environment in bioengineering systems - Provides concepts and technologies that are successfully used in the implementation of today's intelligent data-centric critical systems and multi-media Cloud-Big data