Stochastic Volatility Models with Heavy-tailed Distributions

Stochastic Volatility Models with Heavy-tailed Distributions PDF Author: Toshiaki Watanabe
Publisher:
ISBN:
Category : Bayesian statistical decision theory
Languages : en
Pages : 64

Get Book Here

Book Description

Stochastic Volatility Models with Heavy-tailed Distributions

Stochastic Volatility Models with Heavy-tailed Distributions PDF Author: Toshiaki Watanabe
Publisher:
ISBN:
Category : Bayesian statistical decision theory
Languages : en
Pages : 64

Get Book Here

Book Description


The Fundamentals of Heavy Tails

The Fundamentals of Heavy Tails PDF Author: Jayakrishnan Nair
Publisher: Cambridge University Press
ISBN: 1009062964
Category : Mathematics
Languages : en
Pages : 266

Get Book Here

Book Description
Heavy tails –extreme events or values more common than expected –emerge everywhere: the economy, natural events, and social and information networks are just a few examples. Yet after decades of progress, they are still treated as mysterious, surprising, and even controversial, primarily because the necessary mathematical models and statistical methods are not widely known. This book, for the first time, provides a rigorous introduction to heavy-tailed distributions accessible to anyone who knows elementary probability. It tackles and tames the zoo of terminology for models and properties, demystifying topics such as the generalized central limit theorem and regular variation. It tracks the natural emergence of heavy-tailed distributions from a wide variety of general processes, building intuition. And it reveals the controversy surrounding heavy tails to be the result of flawed statistics, then equips readers to identify and estimate with confidence. Over 100 exercises complete this engaging package.

Handbook of Heavy Tailed Distributions in Finance

Handbook of Heavy Tailed Distributions in Finance PDF Author: S.T Rachev
Publisher: Elsevier
ISBN: 0080557732
Category : Business & Economics
Languages : en
Pages : 707

Get Book Here

Book Description
The Handbooks in Finance are intended to be a definitive source for comprehensive and accessible information in the field of finance. Each individual volume in the series should present an accurate self-contained survey of a sub-field of finance, suitable for use by finance and economics professors and lecturers, professional researchers, graduate students and as a teaching supplement. The goal is to have a broad group of outstanding volumes in various areas of finance. The Handbook of Heavy Tailed Distributions in Finance is the first handbook to be published in this series.This volume presents current research focusing on heavy tailed distributions in finance. The contributions cover methodological issues, i.e., probabilistic, statistical and econometric modelling under non- Gaussian assumptions, as well as the applications of the stable and other non -Gaussian models in finance and risk management.

Handbook Of Heavy-tailed Distributions In Asset Management And Risk Management

Handbook Of Heavy-tailed Distributions In Asset Management And Risk Management PDF Author: Michele Leonardo Bianchi
Publisher: World Scientific
ISBN: 9813276215
Category : Business & Economics
Languages : en
Pages : 598

Get Book Here

Book Description
The study of heavy-tailed distributions allows researchers to represent phenomena that occasionally exhibit very large deviations from the mean. The dynamics underlying these phenomena is an interesting theoretical subject, but the study of their statistical properties is in itself a very useful endeavor from the point of view of managing assets and controlling risk. In this book, the authors are primarily concerned with the statistical properties of heavy-tailed distributions and with the processes that exhibit jumps. A detailed overview with a Matlab implementation of heavy-tailed models applied in asset management and risk managements is presented. The book is not intended as a theoretical treatise on probability or statistics, but as a tool to understand the main concepts regarding heavy-tailed random variables and processes as applied to real-world applications in finance. Accordingly, the authors review approaches and methodologies whose realization will be useful for developing new methods for forecasting of financial variables where extreme events are not treated as anomalies, but as intrinsic parts of the economic process.

Stochastic Volatility and Realized Stochastic Volatility Models

Stochastic Volatility and Realized Stochastic Volatility Models PDF Author: Makoto Takahashi
Publisher: Springer Nature
ISBN: 981990935X
Category : Business & Economics
Languages : en
Pages : 120

Get Book Here

Book Description
This treatise delves into the latest advancements in stochastic volatility models, highlighting the utilization of Markov chain Monte Carlo simulations for estimating model parameters and forecasting the volatility and quantiles of financial asset returns. The modeling of financial time series volatility constitutes a crucial aspect of finance, as it plays a vital role in predicting return distributions and managing risks. Among the various econometric models available, the stochastic volatility model has been a popular choice, particularly in comparison to other models, such as GARCH models, as it has demonstrated superior performance in previous empirical studies in terms of fit, forecasting volatility, and evaluating tail risk measures such as Value-at-Risk and Expected Shortfall. The book also explores an extension of the basic stochastic volatility model, incorporating a skewed return error distribution and a realized volatility measurement equation. The concept of realized volatility, a newly established estimator of volatility using intraday returns data, is introduced, and a comprehensive description of the resulting realized stochastic volatility model is provided. The text contains a thorough explanation of several efficient sampling algorithms for latent log volatilities, as well as an illustration of parameter estimation and volatility prediction through empirical studies utilizing various asset return data, including the yen/US dollar exchange rate, the Dow Jones Industrial Average, and the Nikkei 225 stock index. This publication is highly recommended for readers with an interest in the latest developments in stochastic volatility models and realized stochastic volatility models, particularly in regards to financial risk management.

Dynamic Models for Volatility and Heavy Tails

Dynamic Models for Volatility and Heavy Tails PDF Author: Andrew C. Harvey
Publisher: Cambridge University Press
ISBN: 1107328780
Category : Business & Economics
Languages : en
Pages : 281

Get Book Here

Book Description
The volatility of financial returns changes over time and, for the last thirty years, Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models have provided the principal means of analyzing, modeling and monitoring such changes. Taking into account that financial returns typically exhibit heavy tails - that is, extreme values can occur from time to time - Andrew Harvey's new book shows how a small but radical change in the way GARCH models are formulated leads to a resolution of many of the theoretical problems inherent in the statistical theory. The approach can also be applied to other aspects of volatility. The more general class of Dynamic Conditional Score models extends to robust modeling of outliers in the levels of time series and to the treatment of time-varying relationships. The statistical theory draws on basic principles of maximum likelihood estimation and, by doing so, leads to an elegant and unified treatment of nonlinear time-series modeling.

Parameter Estimation in Stochastic Volatility Models

Parameter Estimation in Stochastic Volatility Models PDF Author: Jaya P. N. Bishwal
Publisher: Springer Nature
ISBN: 3031038614
Category : Mathematics
Languages : en
Pages : 634

Get Book Here

Book Description
This book develops alternative methods to estimate the unknown parameters in stochastic volatility models, offering a new approach to test model accuracy. While there is ample research to document stochastic differential equation models driven by Brownian motion based on discrete observations of the underlying diffusion process, these traditional methods often fail to estimate the unknown parameters in the unobserved volatility processes. This text studies the second order rate of weak convergence to normality to obtain refined inference results like confidence interval, as well as nontraditional continuous time stochastic volatility models driven by fractional Levy processes. By incorporating jumps and long memory into the volatility process, these new methods will help better predict option pricing and stock market crash risk. Some simulation algorithms for numerical experiments are provided.

Handbook Of Energy Finance: Theories, Practices And Simulations

Handbook Of Energy Finance: Theories, Practices And Simulations PDF Author: Stephane Goutte
Publisher: World Scientific
ISBN: 9813278390
Category : Business & Economics
Languages : en
Pages : 827

Get Book Here

Book Description
Modeling the dynamics of energy markets has become a challenging task. The intensification of their financialization since 2004 had made them more complex but also more integrated with other tradable asset classes. More importantly, their large and frequent fluctuations in terms of both prices and volatility, particularly in the aftermath of the global financial crisis 2008-2009, posit difficulties for modeling and forecasting energy price behavior and are primary sources of concerns for macroeconomic stability and general economic performance.This handbook aims to advance the debate on the theories and practices of quantitative energy finance while shedding light on innovative results and technical methods applied to energy markets. Its primary focus is on the recent development and applications of mathematical and quantitative approaches for a better understanding of the stochastic processes that drive energy market movements. The handbook is designed for not only graduate students and researchers but also practitioners and policymakers.

Complex Systems in Finance and Econometrics

Complex Systems in Finance and Econometrics PDF Author: Robert A. Meyers
Publisher: Springer Science & Business Media
ISBN: 1441977007
Category : Business & Economics
Languages : en
Pages : 919

Get Book Here

Book Description
Finance, Econometrics and System Dynamics presents an overview of the concepts and tools for analyzing complex systems in a wide range of fields. The text integrates complexity with deterministic equations and concepts from real world examples, and appeals to a broad audience.

Heavy-Tailed Distributions and Robustness in Economics and Finance

Heavy-Tailed Distributions and Robustness in Economics and Finance PDF Author: Marat Ibragimov
Publisher: Springer
ISBN: 3319168770
Category : Business & Economics
Languages : en
Pages : 131

Get Book Here

Book Description
This book focuses on general frameworks for modeling heavy-tailed distributions in economics, finance, econometrics, statistics, risk management and insurance. A central theme is that of (non-)robustness, i.e., the fact that the presence of heavy tails can either reinforce or reverse the implications of a number of models in these fields, depending on the degree of heavy-tailed ness. These results motivate the development and applications of robust inference approaches under heavy tails, heterogeneity and dependence in observations. Several recently developed robust inference approaches are discussed and illustrated, together with applications.