Author: Alexandre J. Chorin
Publisher: Springer Science & Business Media
ISBN: 1461469805
Category : Mathematics
Languages : en
Pages : 193
Book Description
"Stochastic Tools in Mathematics and Science" covers basic stochastic tools used in physics, chemistry, engineering and the life sciences. The topics covered include conditional expectations, stochastic processes, Brownian motion and its relation to partial differential equations, Langevin equations, the Liouville and Fokker-Planck equations, as well as Markov chain Monte Carlo algorithms, renormalization, basic statistical mechanics, and generalized Langevin equations and the Mori-Zwanzig formalism. The applications include sampling algorithms, data assimilation, prediction from partial data, spectral analysis, and turbulence. The book is based on lecture notes from a class that has attracted graduate and advanced undergraduate students from mathematics and from many other science departments at the University of California, Berkeley. Each chapter is followed by exercises. The book will be useful for scientists and engineers working in a wide range of fields and applications. For this new edition the material has been thoroughly reorganized and updated, and new sections on scaling, sampling, filtering and data assimilation, based on recent research, have been added. There are additional figures and exercises. Review of earlier edition: "This is an excellent concise textbook which can be used for self-study by graduate and advanced undergraduate students and as a recommended textbook for an introductory course on probabilistic tools in science." Mathematical Reviews, 2006
Stochastic Tools in Mathematics and Science
Author: Alexandre J. Chorin
Publisher: Springer Science & Business Media
ISBN: 1461469805
Category : Mathematics
Languages : en
Pages : 193
Book Description
"Stochastic Tools in Mathematics and Science" covers basic stochastic tools used in physics, chemistry, engineering and the life sciences. The topics covered include conditional expectations, stochastic processes, Brownian motion and its relation to partial differential equations, Langevin equations, the Liouville and Fokker-Planck equations, as well as Markov chain Monte Carlo algorithms, renormalization, basic statistical mechanics, and generalized Langevin equations and the Mori-Zwanzig formalism. The applications include sampling algorithms, data assimilation, prediction from partial data, spectral analysis, and turbulence. The book is based on lecture notes from a class that has attracted graduate and advanced undergraduate students from mathematics and from many other science departments at the University of California, Berkeley. Each chapter is followed by exercises. The book will be useful for scientists and engineers working in a wide range of fields and applications. For this new edition the material has been thoroughly reorganized and updated, and new sections on scaling, sampling, filtering and data assimilation, based on recent research, have been added. There are additional figures and exercises. Review of earlier edition: "This is an excellent concise textbook which can be used for self-study by graduate and advanced undergraduate students and as a recommended textbook for an introductory course on probabilistic tools in science." Mathematical Reviews, 2006
Publisher: Springer Science & Business Media
ISBN: 1461469805
Category : Mathematics
Languages : en
Pages : 193
Book Description
"Stochastic Tools in Mathematics and Science" covers basic stochastic tools used in physics, chemistry, engineering and the life sciences. The topics covered include conditional expectations, stochastic processes, Brownian motion and its relation to partial differential equations, Langevin equations, the Liouville and Fokker-Planck equations, as well as Markov chain Monte Carlo algorithms, renormalization, basic statistical mechanics, and generalized Langevin equations and the Mori-Zwanzig formalism. The applications include sampling algorithms, data assimilation, prediction from partial data, spectral analysis, and turbulence. The book is based on lecture notes from a class that has attracted graduate and advanced undergraduate students from mathematics and from many other science departments at the University of California, Berkeley. Each chapter is followed by exercises. The book will be useful for scientists and engineers working in a wide range of fields and applications. For this new edition the material has been thoroughly reorganized and updated, and new sections on scaling, sampling, filtering and data assimilation, based on recent research, have been added. There are additional figures and exercises. Review of earlier edition: "This is an excellent concise textbook which can be used for self-study by graduate and advanced undergraduate students and as a recommended textbook for an introductory course on probabilistic tools in science." Mathematical Reviews, 2006
Stochastic Tools in Mathematics and Science
Author: Alexandre J. Chorin
Publisher: Springer Science & Business Media
ISBN: 1441910026
Category : Mathematics
Languages : en
Pages : 169
Book Description
This introduction to probability-based modeling covers basic stochastic tools used in physics, chemistry, engineering and the life sciences. Topics covered include conditional expectations, stochastic processes, Langevin equations, and Markov chain Monte Carlo algorithms. The applications include data assimilation, prediction from partial data, spectral analysis and turbulence. A special feature is the systematic analysis of memory effects.
Publisher: Springer Science & Business Media
ISBN: 1441910026
Category : Mathematics
Languages : en
Pages : 169
Book Description
This introduction to probability-based modeling covers basic stochastic tools used in physics, chemistry, engineering and the life sciences. Topics covered include conditional expectations, stochastic processes, Langevin equations, and Markov chain Monte Carlo algorithms. The applications include data assimilation, prediction from partial data, spectral analysis and turbulence. A special feature is the systematic analysis of memory effects.
Stochastic Tools in Turbulence
Author: John L. Lumley
Publisher: Courier Corporation
ISBN: 0486462706
Category : Science
Languages : en
Pages : 210
Book Description
This accessible treatment offers the mathematical tools for describing and solving problems related to stochastic vector fields. Advanced undergraduates and graduate students will find its use of generalized functions a relatively simple method of resolving mathematical questions. It will prove a valuable reference for applied mathematicians and professionals in the fields of aerospace, chemical, civil, and nuclear engineering. The author, Professor Emeritus of Engineering at Cornell University, starts with a survey of probability distributions and densities and proceeds to examinations of moments, characteristic functions, and the Gaussian distribution; random functions; and random processes in more dimensions. Extensive appendixes—which include information on Fourier transforms, tensors, generalized functions, and invariant theory—contribute toward making this volume mathematically self-contained.
Publisher: Courier Corporation
ISBN: 0486462706
Category : Science
Languages : en
Pages : 210
Book Description
This accessible treatment offers the mathematical tools for describing and solving problems related to stochastic vector fields. Advanced undergraduates and graduate students will find its use of generalized functions a relatively simple method of resolving mathematical questions. It will prove a valuable reference for applied mathematicians and professionals in the fields of aerospace, chemical, civil, and nuclear engineering. The author, Professor Emeritus of Engineering at Cornell University, starts with a survey of probability distributions and densities and proceeds to examinations of moments, characteristic functions, and the Gaussian distribution; random functions; and random processes in more dimensions. Extensive appendixes—which include information on Fourier transforms, tensors, generalized functions, and invariant theory—contribute toward making this volume mathematically self-contained.
Theory of Stochastic Differential Equations with Jumps and Applications
Author: Rong SITU
Publisher: Springer Science & Business Media
ISBN: 0387251758
Category : Technology & Engineering
Languages : en
Pages : 444
Book Description
Stochastic differential equations (SDEs) are a powerful tool in science, mathematics, economics and finance. This book will help the reader to master the basic theory and learn some applications of SDEs. In particular, the reader will be provided with the backward SDE technique for use in research when considering financial problems in the market, and with the reflecting SDE technique to enable study of optimal stochastic population control problems. These two techniques are powerful and efficient, and can also be applied to research in many other problems in nature, science and elsewhere.
Publisher: Springer Science & Business Media
ISBN: 0387251758
Category : Technology & Engineering
Languages : en
Pages : 444
Book Description
Stochastic differential equations (SDEs) are a powerful tool in science, mathematics, economics and finance. This book will help the reader to master the basic theory and learn some applications of SDEs. In particular, the reader will be provided with the backward SDE technique for use in research when considering financial problems in the market, and with the reflecting SDE technique to enable study of optimal stochastic population control problems. These two techniques are powerful and efficient, and can also be applied to research in many other problems in nature, science and elsewhere.
Stochastic Tools in Mathematics and Science
Author: Alexandre Joel Chorin
Publisher:
ISBN: 9781461469810
Category :
Languages : en
Pages : 214
Book Description
Publisher:
ISBN: 9781461469810
Category :
Languages : en
Pages : 214
Book Description
An Introduction to Stochastic Modeling
Author: Howard M. Taylor
Publisher: Academic Press
ISBN: 1483269272
Category : Mathematics
Languages : en
Pages : 410
Book Description
An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.
Publisher: Academic Press
ISBN: 1483269272
Category : Mathematics
Languages : en
Pages : 410
Book Description
An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.
Elementary Stochastic Calculus with Finance in View
Author: Thomas Mikosch
Publisher: World Scientific
ISBN: 9789810235437
Category : Mathematics
Languages : en
Pages : 230
Book Description
Modelling with the Ito integral or stochastic differential equations has become increasingly important in various applied fields, including physics, biology, chemistry and finance. However, stochastic calculus is based on a deep mathematical theory. This book is suitable for the reader without a deep mathematical background. It gives an elementary introduction to that area of probability theory, without burdening the reader with a great deal of measure theory. Applications are taken from stochastic finance. In particular, the Black -- Scholes option pricing formula is derived. The book can serve as a text for a course on stochastic calculus for non-mathematicians or as elementary reading material for anyone who wants to learn about Ito calculus and/or stochastic finance.
Publisher: World Scientific
ISBN: 9789810235437
Category : Mathematics
Languages : en
Pages : 230
Book Description
Modelling with the Ito integral or stochastic differential equations has become increasingly important in various applied fields, including physics, biology, chemistry and finance. However, stochastic calculus is based on a deep mathematical theory. This book is suitable for the reader without a deep mathematical background. It gives an elementary introduction to that area of probability theory, without burdening the reader with a great deal of measure theory. Applications are taken from stochastic finance. In particular, the Black -- Scholes option pricing formula is derived. The book can serve as a text for a course on stochastic calculus for non-mathematicians or as elementary reading material for anyone who wants to learn about Ito calculus and/or stochastic finance.
Stochastic Modeling
Author: Barry L. Nelson
Publisher: Courier Corporation
ISBN: 0486139948
Category : Mathematics
Languages : en
Pages : 338
Book Description
Coherent introduction to techniques also offers a guide to the mathematical, numerical, and simulation tools of systems analysis. Includes formulation of models, analysis, and interpretation of results. 1995 edition.
Publisher: Courier Corporation
ISBN: 0486139948
Category : Mathematics
Languages : en
Pages : 338
Book Description
Coherent introduction to techniques also offers a guide to the mathematical, numerical, and simulation tools of systems analysis. Includes formulation of models, analysis, and interpretation of results. 1995 edition.
Stochastic Modelling in Process Technology
Author: Herold G. Dehling
Publisher: Elsevier
ISBN: 0080548970
Category : Mathematics
Languages : en
Pages : 291
Book Description
There is an ever increasing need for modelling complex processes reliably. Computational modelling techniques, such as CFD and MD may be used as tools to study specific systems, but their emergence has not decreased the need for generic, analytical process models. Multiphase and multicomponent systems, and high-intensity processes displaying a highly complex behaviour are becoming omnipresent in the processing industry. This book discusses an elegant, but little-known technique for formulating process models in process technology: stochastic process modelling. The technique is based on computing the probability distribution for a single particle's position in the process vessel, and/or the particle's properties, as a function of time, rather than - as is traditionally done - basing the model on the formulation and solution of differential conservation equations. Using this technique can greatly simplify the formulation of a model, and even make modelling possible for processes so complex that the traditional method is impracticable. Stochastic modelling has sporadically been used in various branches of process technology under various names and guises. This book gives, as the first, an overview of this work, and shows how these techniques are similar in nature, and make use of the same basic mathematical tools and techniques. The book also demonstrates how stochastic modelling may be implemented by describing example cases, and shows how a stochastic model may be formulated for a case, which cannot be described by formulating and solving differential balance equations. - Introduction to stochastic process modelling as an alternative modelling technique - Shows how stochastic modelling may be succesful where the traditional technique fails - Overview of stochastic modelling in process technology in the research literature - Illustration of the principle by a wide range of practical examples - In-depth and self-contained discussions - Points the way to both mathematical and technological research in a new, rewarding field
Publisher: Elsevier
ISBN: 0080548970
Category : Mathematics
Languages : en
Pages : 291
Book Description
There is an ever increasing need for modelling complex processes reliably. Computational modelling techniques, such as CFD and MD may be used as tools to study specific systems, but their emergence has not decreased the need for generic, analytical process models. Multiphase and multicomponent systems, and high-intensity processes displaying a highly complex behaviour are becoming omnipresent in the processing industry. This book discusses an elegant, but little-known technique for formulating process models in process technology: stochastic process modelling. The technique is based on computing the probability distribution for a single particle's position in the process vessel, and/or the particle's properties, as a function of time, rather than - as is traditionally done - basing the model on the formulation and solution of differential conservation equations. Using this technique can greatly simplify the formulation of a model, and even make modelling possible for processes so complex that the traditional method is impracticable. Stochastic modelling has sporadically been used in various branches of process technology under various names and guises. This book gives, as the first, an overview of this work, and shows how these techniques are similar in nature, and make use of the same basic mathematical tools and techniques. The book also demonstrates how stochastic modelling may be implemented by describing example cases, and shows how a stochastic model may be formulated for a case, which cannot be described by formulating and solving differential balance equations. - Introduction to stochastic process modelling as an alternative modelling technique - Shows how stochastic modelling may be succesful where the traditional technique fails - Overview of stochastic modelling in process technology in the research literature - Illustration of the principle by a wide range of practical examples - In-depth and self-contained discussions - Points the way to both mathematical and technological research in a new, rewarding field
Essentials of Stochastic Processes
Author: Richard Durrett
Publisher: Springer
ISBN: 3319456148
Category : Mathematics
Languages : en
Pages : 282
Book Description
Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatment of other topics useful for applications has been expanded. In addition, the ordering of topics has been improved; for example, the difficult subject of martingales is delayed until its usefulness can be applied in the treatment of mathematical finance.
Publisher: Springer
ISBN: 3319456148
Category : Mathematics
Languages : en
Pages : 282
Book Description
Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatment of other topics useful for applications has been expanded. In addition, the ordering of topics has been improved; for example, the difficult subject of martingales is delayed until its usefulness can be applied in the treatment of mathematical finance.