Author: Mikio Namiki
Publisher: Springer Science & Business Media
ISBN: 3540472177
Category : Science
Languages : en
Pages : 227
Book Description
This is a textbook on stochastic quantization which was originally proposed by G. Parisi and Y. S. Wu in 1981 and then developed by many workers. I assume that the reader has finished a standard course in quantum field theory. The Parisi-Wu stochastic quantization method gives quantum mechanics as the thermal-equilibrium limit of a hypothetical stochastic process with respect to some fictitious time other than ordinary time. We can consider this to be a third method of quantization; remarkably different from the conventional theories, i. e, the canonical and path-integral ones. Over the past ten years, we have seen the technical merits of this method in quantizing gauge fields and in performing large numerical simulations, which have never been obtained by the other methods. I believe that the stochastic quantization method has the potential to extend the territory of quantum mechanics and of quantum field theory. However, I should remark that stochastic quantization is still under development through many mathematical improvements and physical applications, and also that the fictitious time of the theory is only a mathematical tool, for which we do not yet know its origin in the physical background. For these reasons, in this book, I attempt to describe its theoretical formulation in detail as well as practical achievements.
Stochastic Quantization
Author: Mikio Namiki
Publisher: Springer Science & Business Media
ISBN: 3540472177
Category : Science
Languages : en
Pages : 227
Book Description
This is a textbook on stochastic quantization which was originally proposed by G. Parisi and Y. S. Wu in 1981 and then developed by many workers. I assume that the reader has finished a standard course in quantum field theory. The Parisi-Wu stochastic quantization method gives quantum mechanics as the thermal-equilibrium limit of a hypothetical stochastic process with respect to some fictitious time other than ordinary time. We can consider this to be a third method of quantization; remarkably different from the conventional theories, i. e, the canonical and path-integral ones. Over the past ten years, we have seen the technical merits of this method in quantizing gauge fields and in performing large numerical simulations, which have never been obtained by the other methods. I believe that the stochastic quantization method has the potential to extend the territory of quantum mechanics and of quantum field theory. However, I should remark that stochastic quantization is still under development through many mathematical improvements and physical applications, and also that the fictitious time of the theory is only a mathematical tool, for which we do not yet know its origin in the physical background. For these reasons, in this book, I attempt to describe its theoretical formulation in detail as well as practical achievements.
Publisher: Springer Science & Business Media
ISBN: 3540472177
Category : Science
Languages : en
Pages : 227
Book Description
This is a textbook on stochastic quantization which was originally proposed by G. Parisi and Y. S. Wu in 1981 and then developed by many workers. I assume that the reader has finished a standard course in quantum field theory. The Parisi-Wu stochastic quantization method gives quantum mechanics as the thermal-equilibrium limit of a hypothetical stochastic process with respect to some fictitious time other than ordinary time. We can consider this to be a third method of quantization; remarkably different from the conventional theories, i. e, the canonical and path-integral ones. Over the past ten years, we have seen the technical merits of this method in quantizing gauge fields and in performing large numerical simulations, which have never been obtained by the other methods. I believe that the stochastic quantization method has the potential to extend the territory of quantum mechanics and of quantum field theory. However, I should remark that stochastic quantization is still under development through many mathematical improvements and physical applications, and also that the fictitious time of the theory is only a mathematical tool, for which we do not yet know its origin in the physical background. For these reasons, in this book, I attempt to describe its theoretical formulation in detail as well as practical achievements.
Stochastic Quantization
Author: Poul Henrik Damgaard
Publisher: World Scientific
ISBN: 9789971502546
Category : Science
Languages : en
Pages : 512
Book Description
This collection of selected reprints presents as broad a selection as possible, emphasizing formal and numerical aspects of Stochastic Quantization. It reviews and explains the most important concepts placing selected reprints and crucial papers into perspective and compact form.
Publisher: World Scientific
ISBN: 9789971502546
Category : Science
Languages : en
Pages : 512
Book Description
This collection of selected reprints presents as broad a selection as possible, emphasizing formal and numerical aspects of Stochastic Quantization. It reviews and explains the most important concepts placing selected reprints and crucial papers into perspective and compact form.
Path Integral Quantization and Stochastic Quantization
Author: Michio Masujima
Publisher: Springer
ISBN: 3540481621
Category : Science
Languages : en
Pages : 287
Book Description
In this book, we discuss the path integral quantization and the stochastic quantization of classical mechanics and classical field theory. For the description of the classical theory, we have two methods, one based on the Lagrangian formalism and the other based on the Hamiltonian formal ism. The Harniltonian formalisni is derived from the Lagrangian formalism. In the standard formalism of quantum mechanics, we usually make use of the Hamiltonian formalism. This fact originates from the following circumstance which dates back to the birth of quantum mechanics. The first formalism of quantum mechanics is Schrodinger's wave mechan ics. In this approach, we regard the Hamilton Jacobi equation of analytical mechanics as the Eikonal equation of "geometrical mechanics". Bsed on the optical analogy, we obtain the Schrodinger equation as a result of the inverse of the Eikonal approximation to the Hamilton Jacobi equation, and thus we arrive at "wave mechanics" . The second formalism of quantum mechanics is Heisenberg's "matrix me chanics". In this approach, we arrive at the Heisenberg equation of motion frorn consideration of the consistency of the Ritz combination principle, the Bohr quantization condition and the Fourier analysis of a physical quantity. These two forrnalisrns make up the Hamiltonian formalism of quantum me chanics.
Publisher: Springer
ISBN: 3540481621
Category : Science
Languages : en
Pages : 287
Book Description
In this book, we discuss the path integral quantization and the stochastic quantization of classical mechanics and classical field theory. For the description of the classical theory, we have two methods, one based on the Lagrangian formalism and the other based on the Hamiltonian formal ism. The Harniltonian formalisni is derived from the Lagrangian formalism. In the standard formalism of quantum mechanics, we usually make use of the Hamiltonian formalism. This fact originates from the following circumstance which dates back to the birth of quantum mechanics. The first formalism of quantum mechanics is Schrodinger's wave mechan ics. In this approach, we regard the Hamilton Jacobi equation of analytical mechanics as the Eikonal equation of "geometrical mechanics". Bsed on the optical analogy, we obtain the Schrodinger equation as a result of the inverse of the Eikonal approximation to the Hamilton Jacobi equation, and thus we arrive at "wave mechanics" . The second formalism of quantum mechanics is Heisenberg's "matrix me chanics". In this approach, we arrive at the Heisenberg equation of motion frorn consideration of the consistency of the Ritz combination principle, the Bohr quantization condition and the Fourier analysis of a physical quantity. These two forrnalisrns make up the Hamiltonian formalism of quantum me chanics.
Geometry, Topology and Quantization
Author: P. Bandyopadhyay
Publisher: Springer Science & Business Media
ISBN: 9401154260
Category : Science
Languages : en
Pages : 236
Book Description
This is a monograph on geometrical and topological features which arise in various quantization procedures. Quantization schemes consider the feasibility of arriving at a quantum system from a classical one and these involve three major procedures viz. i) geometric quantization, ii) Klauder quantization, and iii) stochastic quanti zation. In geometric quantization we have to incorporate a hermitian line bundle to effectively generate the quantum Hamiltonian operator from a classical Hamil tonian. Klauder quantization also takes into account the role of the connection one-form along with coordinate independence. In stochastic quantization as pro posed by Nelson, Schrodinger equation is derived from Brownian motion processes; however, we have difficulty in its relativistic generalization. It has been pointed out by several authors that this may be circumvented by formulating a new geometry where Brownian motion proceses are considered in external as well as in internal space and, when the complexified space-time is considered, the usual path integral formulation is achieved. When this internal space variable is considered as a direc tion vector introducing an anisotropy in the internal space, we have the quantization of a Fermi field. This helps us to formulate a stochastic phase space formalism when the internal extension can be treated as a gauge theoretic extension. This suggests that massive fermions may be considered as Skyrme solitons. The nonrelativistic quantum mechanics is achieved in the sharp point limit.
Publisher: Springer Science & Business Media
ISBN: 9401154260
Category : Science
Languages : en
Pages : 236
Book Description
This is a monograph on geometrical and topological features which arise in various quantization procedures. Quantization schemes consider the feasibility of arriving at a quantum system from a classical one and these involve three major procedures viz. i) geometric quantization, ii) Klauder quantization, and iii) stochastic quanti zation. In geometric quantization we have to incorporate a hermitian line bundle to effectively generate the quantum Hamiltonian operator from a classical Hamil tonian. Klauder quantization also takes into account the role of the connection one-form along with coordinate independence. In stochastic quantization as pro posed by Nelson, Schrodinger equation is derived from Brownian motion processes; however, we have difficulty in its relativistic generalization. It has been pointed out by several authors that this may be circumvented by formulating a new geometry where Brownian motion proceses are considered in external as well as in internal space and, when the complexified space-time is considered, the usual path integral formulation is achieved. When this internal space variable is considered as a direc tion vector introducing an anisotropy in the internal space, we have the quantization of a Fermi field. This helps us to formulate a stochastic phase space formalism when the internal extension can be treated as a gauge theoretic extension. This suggests that massive fermions may be considered as Skyrme solitons. The nonrelativistic quantum mechanics is achieved in the sharp point limit.
Spatio-temporal Chaos and Vacuum Fluctuations of Quantized Fields
Author: Christian Beck
Publisher: World Scientific
ISBN: 9789810247980
Category : Science
Languages : en
Pages : 294
Book Description
"This book deals with new applications for coupled map lattices in quantum field theories and elementary particle physics"--P. xiii.
Publisher: World Scientific
ISBN: 9789810247980
Category : Science
Languages : en
Pages : 294
Book Description
"This book deals with new applications for coupled map lattices in quantum field theories and elementary particle physics"--P. xiii.
Quantum and Stochastic Mathematical Physics
Author: Astrid Hilbert
Publisher: Springer Nature
ISBN: 3031140311
Category : Mathematics
Languages : en
Pages : 390
Book Description
Sergio Albeverio gave important contributions to many fields ranging from Physics to Mathematics, while creating new research areas from their interplay. Some of them are presented in this Volume that grew out of the Random Transformations and Invariance in Stochastic Dynamics Workshop held in Verona in 2019. To understand the theory of thermo- and fluid-dynamics, statistical mechanics, quantum mechanics and quantum field theory, Albeverio and his collaborators developed stochastic theories having strong interplays with operator theory and functional analysis. His contribution to the theory of (non Gaussian)-SPDEs, the related theory of (pseudo-)differential operators, and ergodic theory had several impacts to solve problems related, among other topics, to thermo- and fluid dynamics. His scientific works in the theory of interacting particles and its extension to configuration spaces lead, e.g., to the solution of open problems in statistical mechanics and quantum field theory. Together with Raphael Hoegh Krohn he introduced the theory of infinite dimensional Dirichlet forms, which nowadays is used in many different contexts, and new methods in the theory of Feynman path integration. He did not fear to further develop different methods in Mathematics, like, e.g., the theory of non-standard analysis and p-adic numbers.
Publisher: Springer Nature
ISBN: 3031140311
Category : Mathematics
Languages : en
Pages : 390
Book Description
Sergio Albeverio gave important contributions to many fields ranging from Physics to Mathematics, while creating new research areas from their interplay. Some of them are presented in this Volume that grew out of the Random Transformations and Invariance in Stochastic Dynamics Workshop held in Verona in 2019. To understand the theory of thermo- and fluid-dynamics, statistical mechanics, quantum mechanics and quantum field theory, Albeverio and his collaborators developed stochastic theories having strong interplays with operator theory and functional analysis. His contribution to the theory of (non Gaussian)-SPDEs, the related theory of (pseudo-)differential operators, and ergodic theory had several impacts to solve problems related, among other topics, to thermo- and fluid dynamics. His scientific works in the theory of interacting particles and its extension to configuration spaces lead, e.g., to the solution of open problems in statistical mechanics and quantum field theory. Together with Raphael Hoegh Krohn he introduced the theory of infinite dimensional Dirichlet forms, which nowadays is used in many different contexts, and new methods in the theory of Feynman path integration. He did not fear to further develop different methods in Mathematics, like, e.g., the theory of non-standard analysis and p-adic numbers.
Stochastic Resonance
Author: Mark D. McDonnell
Publisher: Cambridge University Press
ISBN: 9780521882620
Category : Science
Languages : en
Pages : 448
Book Description
The stochastic resonance phenomenon has been observed in many forms of systems and has been debated by scientists for 30 years. Applications incorporating aspects of stochastic resonance have yet to prove revolutionary in fields such as distributed sensor networks, nano-electronics, and biomedical prosthetics. The initial chapters review stochastic resonance basics and outline some of the controversies and debates that have surrounded it. The book continues to discuss stochastic quantization in a model where all threshold devices are not necessarily identical, but are still independently noisy. Finally, it considers various constraints and tradeoffs in the performance of stochastic quantizers. Each chapter ends with a review summarizing the main points, and open questions to guide researchers into finding new research directions.
Publisher: Cambridge University Press
ISBN: 9780521882620
Category : Science
Languages : en
Pages : 448
Book Description
The stochastic resonance phenomenon has been observed in many forms of systems and has been debated by scientists for 30 years. Applications incorporating aspects of stochastic resonance have yet to prove revolutionary in fields such as distributed sensor networks, nano-electronics, and biomedical prosthetics. The initial chapters review stochastic resonance basics and outline some of the controversies and debates that have surrounded it. The book continues to discuss stochastic quantization in a model where all threshold devices are not necessarily identical, but are still independently noisy. Finally, it considers various constraints and tradeoffs in the performance of stochastic quantizers. Each chapter ends with a review summarizing the main points, and open questions to guide researchers into finding new research directions.
Stochastic Partial Differential Equations: Six Perspectives
Author: René Carmona
Publisher: American Mathematical Soc.
ISBN: 9780821808061
Category : Mathematics
Languages : en
Pages : 360
Book Description
Presents the main topics of interest in the field of stochastic partial differential equations (SPDEs), emphasizing breakthroughs and such basic issues as the role of SPDEs in stochastic modeling, how SPDEs arise, and how their theory is applied in different disciplines. Emphasis is placed on the genesis and applications of SPDEs, as well as mathematical theory and numerical methods. Suitable for graduate level students, researchers. Annotation copyrighted by Book News, Inc., Portland, OR
Publisher: American Mathematical Soc.
ISBN: 9780821808061
Category : Mathematics
Languages : en
Pages : 360
Book Description
Presents the main topics of interest in the field of stochastic partial differential equations (SPDEs), emphasizing breakthroughs and such basic issues as the role of SPDEs in stochastic modeling, how SPDEs arise, and how their theory is applied in different disciplines. Emphasis is placed on the genesis and applications of SPDEs, as well as mathematical theory and numerical methods. Suitable for graduate level students, researchers. Annotation copyrighted by Book News, Inc., Portland, OR
Low-Power Computer Vision
Author: George K. Thiruvathukal
Publisher: CRC Press
ISBN: 1000540960
Category : Computers
Languages : en
Pages : 395
Book Description
Energy efficiency is critical for running computer vision on battery-powered systems, such as mobile phones or UAVs (unmanned aerial vehicles, or drones). This book collects the methods that have won the annual IEEE Low-Power Computer Vision Challenges since 2015. The winners share their solutions and provide insight on how to improve the efficiency of machine learning systems.
Publisher: CRC Press
ISBN: 1000540960
Category : Computers
Languages : en
Pages : 395
Book Description
Energy efficiency is critical for running computer vision on battery-powered systems, such as mobile phones or UAVs (unmanned aerial vehicles, or drones). This book collects the methods that have won the annual IEEE Low-Power Computer Vision Challenges since 2015. The winners share their solutions and provide insight on how to improve the efficiency of machine learning systems.
Quarks, Symmetries And Strings - A Symposium In Honor Of Bunji Sakita's 60th Birthday
Author: Michio Kaku
Publisher: World Scientific
ISBN: 9814569283
Category :
Languages : en
Pages : 436
Book Description
Quarks, Symmetries and Strings is a book that reflects the rich diversity of current research in physics: it describes quantum chromodynamics, quark phenomenology, superstring theory, supersymmetry, matrix models, statistical methods, superconductivity and neural networks. The book also reflects the diversity of Dr Bunji Sakita's scientific work. Dr Sakita has made seminal contributions in many of these areas. The book celebrates the many path-breaking ideas he pioneered which still cross-fertilize many of the most active areas of current research.
Publisher: World Scientific
ISBN: 9814569283
Category :
Languages : en
Pages : 436
Book Description
Quarks, Symmetries and Strings is a book that reflects the rich diversity of current research in physics: it describes quantum chromodynamics, quark phenomenology, superstring theory, supersymmetry, matrix models, statistical methods, superconductivity and neural networks. The book also reflects the diversity of Dr Bunji Sakita's scientific work. Dr Sakita has made seminal contributions in many of these areas. The book celebrates the many path-breaking ideas he pioneered which still cross-fertilize many of the most active areas of current research.