Author: Jason L. Speyer
Publisher: SIAM
ISBN: 0898716551
Category : Mathematics
Languages : en
Pages : 391
Book Description
The authors provide a comprehensive treatment of stochastic systems from the foundations of probability to stochastic optimal control. The book covers discrete- and continuous-time stochastic dynamic systems leading to the derivation of the Kalman filter, its properties, and its relation to the frequency domain Wiener filter aswell as the dynamic programming derivation of the linear quadratic Gaussian (LQG) and the linear exponential Gaussian (LEG) controllers and their relation to HÝsubscript 2¨ and HÝsubscript Ýinfinity¨¨ controllers and system robustness. This book is suitable for first-year graduate students in electrical, mechanical, chemical, and aerospace engineering specializing in systems and control. Students in computer science, economics, and possibly business will also find it useful.
Stochastic Processes, Estimation, and Control
Author: Jason L. Speyer
Publisher: SIAM
ISBN: 0898716551
Category : Mathematics
Languages : en
Pages : 391
Book Description
The authors provide a comprehensive treatment of stochastic systems from the foundations of probability to stochastic optimal control. The book covers discrete- and continuous-time stochastic dynamic systems leading to the derivation of the Kalman filter, its properties, and its relation to the frequency domain Wiener filter aswell as the dynamic programming derivation of the linear quadratic Gaussian (LQG) and the linear exponential Gaussian (LEG) controllers and their relation to HÝsubscript 2¨ and HÝsubscript Ýinfinity¨¨ controllers and system robustness. This book is suitable for first-year graduate students in electrical, mechanical, chemical, and aerospace engineering specializing in systems and control. Students in computer science, economics, and possibly business will also find it useful.
Publisher: SIAM
ISBN: 0898716551
Category : Mathematics
Languages : en
Pages : 391
Book Description
The authors provide a comprehensive treatment of stochastic systems from the foundations of probability to stochastic optimal control. The book covers discrete- and continuous-time stochastic dynamic systems leading to the derivation of the Kalman filter, its properties, and its relation to the frequency domain Wiener filter aswell as the dynamic programming derivation of the linear quadratic Gaussian (LQG) and the linear exponential Gaussian (LEG) controllers and their relation to HÝsubscript 2¨ and HÝsubscript Ýinfinity¨¨ controllers and system robustness. This book is suitable for first-year graduate students in electrical, mechanical, chemical, and aerospace engineering specializing in systems and control. Students in computer science, economics, and possibly business will also find it useful.
Discrete-time Stochastic Systems
Author: Torsten Söderström
Publisher: Springer Science & Business Media
ISBN: 1447101014
Category : Mathematics
Languages : en
Pages : 387
Book Description
This comprehensive introduction to the estimation and control of dynamic stochastic systems provides complete derivations of key results. The second edition includes improved and updated material, and a new presentation of polynomial control and new derivation of linear-quadratic-Gaussian control.
Publisher: Springer Science & Business Media
ISBN: 1447101014
Category : Mathematics
Languages : en
Pages : 387
Book Description
This comprehensive introduction to the estimation and control of dynamic stochastic systems provides complete derivations of key results. The second edition includes improved and updated material, and a new presentation of polynomial control and new derivation of linear-quadratic-Gaussian control.
Stochastic Processes, Finance And Control: A Festschrift In Honor Of Robert J Elliott
Author: Samuel N Cohen
Publisher: World Scientific
ISBN: 9814483915
Category : Mathematics
Languages : en
Pages : 605
Book Description
This book consists of a series of new, peer-reviewed papers in stochastic processes, analysis, filtering and control, with particular emphasis on mathematical finance, actuarial science and engineering. Paper contributors include colleagues, collaborators and former students of Robert Elliott, many of whom are world-leading experts and have made fundamental and significant contributions to these areas.This book provides new important insights and results by eminent researchers in the considered areas, which will be of interest to researchers and practitioners. The topics considered will be diverse in applications, and will provide contemporary approaches to the problems considered. The areas considered are rapidly evolving. This volume will contribute to their development, and present the current state-of-the-art stochastic processes, analysis, filtering and control.Contributing authors include: H Albrecher, T Bielecki, F Dufour, M Jeanblanc, I Karatzas, H-H Kuo, A Melnikov, E Platen, G Yin, Q Zhang, C Chiarella, W Fleming, D Madan, R Mamon, J Yan, V Krishnamurthy.
Publisher: World Scientific
ISBN: 9814483915
Category : Mathematics
Languages : en
Pages : 605
Book Description
This book consists of a series of new, peer-reviewed papers in stochastic processes, analysis, filtering and control, with particular emphasis on mathematical finance, actuarial science and engineering. Paper contributors include colleagues, collaborators and former students of Robert Elliott, many of whom are world-leading experts and have made fundamental and significant contributions to these areas.This book provides new important insights and results by eminent researchers in the considered areas, which will be of interest to researchers and practitioners. The topics considered will be diverse in applications, and will provide contemporary approaches to the problems considered. The areas considered are rapidly evolving. This volume will contribute to their development, and present the current state-of-the-art stochastic processes, analysis, filtering and control.Contributing authors include: H Albrecher, T Bielecki, F Dufour, M Jeanblanc, I Karatzas, H-H Kuo, A Melnikov, E Platen, G Yin, Q Zhang, C Chiarella, W Fleming, D Madan, R Mamon, J Yan, V Krishnamurthy.
Stochastic Systems
Author: P. R. Kumar
Publisher: SIAM
ISBN: 1611974259
Category : Mathematics
Languages : en
Pages : 371
Book Description
Since its origins in the 1940s, the subject of decision making under uncertainty has grown into a diversified area with application in several branches of engineering and in those areas of the social sciences concerned with policy analysis and prescription. These approaches required a computing capacity too expensive for the time, until the ability to collect and process huge quantities of data engendered an explosion of work in the area. This book provides succinct and rigorous treatment of the foundations of stochastic control; a unified approach to filtering, estimation, prediction, and stochastic and adaptive control; and the conceptual framework necessary to understand current trends in stochastic control, data mining, machine learning, and robotics.
Publisher: SIAM
ISBN: 1611974259
Category : Mathematics
Languages : en
Pages : 371
Book Description
Since its origins in the 1940s, the subject of decision making under uncertainty has grown into a diversified area with application in several branches of engineering and in those areas of the social sciences concerned with policy analysis and prescription. These approaches required a computing capacity too expensive for the time, until the ability to collect and process huge quantities of data engendered an explosion of work in the area. This book provides succinct and rigorous treatment of the foundations of stochastic control; a unified approach to filtering, estimation, prediction, and stochastic and adaptive control; and the conceptual framework necessary to understand current trends in stochastic control, data mining, machine learning, and robotics.
Stochastic Processes, Estimation, and Control
Author: George N. Saridis
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 256
Book Description
In this, the first introductory book on stochastic processes in twenty years, leading theoretician George Saridis provides a modern innovative approach that applies the most recent advances in probabilistic processes to such areas as communications and robotics technology. Stochastic Processes, Estimation, and Control: The Entropy Approach is designed as a text for graduate courses in dynamic programming and stochastic control, stochastic processes, or applied probability in the engineering or mathematical/computational science departments, and as a guide for the practicing engineer and researcher it offers a lucid discussion of parameter estimation based on least square techniques, an in-depth investigation of the estimation of the states of a stochastic linear and nonlinear dynamic system, and a modified derivation of the linear-quadratic Gaussian optimal control problem. Professor Saridis's presentation of estimation and control theory is thorough, but avoids the use of advanced mathematics. A new theory of approximation of the optimal solution for nonlinear stochastic systems is presented as a general engineering tool, and the whole area of stochastic processes, estimation, and control is recast using entropy as a measure.
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 256
Book Description
In this, the first introductory book on stochastic processes in twenty years, leading theoretician George Saridis provides a modern innovative approach that applies the most recent advances in probabilistic processes to such areas as communications and robotics technology. Stochastic Processes, Estimation, and Control: The Entropy Approach is designed as a text for graduate courses in dynamic programming and stochastic control, stochastic processes, or applied probability in the engineering or mathematical/computational science departments, and as a guide for the practicing engineer and researcher it offers a lucid discussion of parameter estimation based on least square techniques, an in-depth investigation of the estimation of the states of a stochastic linear and nonlinear dynamic system, and a modified derivation of the linear-quadratic Gaussian optimal control problem. Professor Saridis's presentation of estimation and control theory is thorough, but avoids the use of advanced mathematics. A new theory of approximation of the optimal solution for nonlinear stochastic systems is presented as a general engineering tool, and the whole area of stochastic processes, estimation, and control is recast using entropy as a measure.
Stochastic Models, Estimation, and Control
Author: Peter S. Maybeck
Publisher: Academic Press
ISBN: 0080960030
Category : Mathematics
Languages : en
Pages : 311
Book Description
This volume builds upon the foundations set in Volumes 1 and 2. Chapter 13 introduces the basic concepts of stochastic control and dynamic programming as the fundamental means of synthesizing optimal stochastic control laws.
Publisher: Academic Press
ISBN: 0080960030
Category : Mathematics
Languages : en
Pages : 311
Book Description
This volume builds upon the foundations set in Volumes 1 and 2. Chapter 13 introduces the basic concepts of stochastic control and dynamic programming as the fundamental means of synthesizing optimal stochastic control laws.
Optimal and Robust Estimation
Author: Frank L. Lewis
Publisher: CRC Press
ISBN: 1420008293
Category : Technology & Engineering
Languages : en
Pages : 546
Book Description
More than a decade ago, world-renowned control systems authority Frank L. Lewis introduced what would become a standard textbook on estimation, under the title Optimal Estimation, used in top universities throughout the world. The time has come for a new edition of this classic text, and Lewis enlisted the aid of two accomplished experts to bring the book completely up to date with the estimation methods driving today's high-performance systems. A Classic Revisited Optimal and Robust Estimation: With an Introduction to Stochastic Control Theory, Second Edition reflects new developments in estimation theory and design techniques. As the title suggests, the major feature of this edition is the inclusion of robust methods. Three new chapters cover the robust Kalman filter, H-infinity filtering, and H-infinity filtering of discrete-time systems. Modern Tools for Tomorrow's Engineers This text overflows with examples that highlight practical applications of the theory and concepts. Design algorithms appear conveniently in tables, allowing students quick reference, easy implementation into software, and intuitive comparisons for selecting the best algorithm for a given application. In addition, downloadable MATLAB® code allows students to gain hands-on experience with industry-standard software tools for a wide variety of applications. This cutting-edge and highly interactive text makes teaching, and learning, estimation methods easier and more modern than ever.
Publisher: CRC Press
ISBN: 1420008293
Category : Technology & Engineering
Languages : en
Pages : 546
Book Description
More than a decade ago, world-renowned control systems authority Frank L. Lewis introduced what would become a standard textbook on estimation, under the title Optimal Estimation, used in top universities throughout the world. The time has come for a new edition of this classic text, and Lewis enlisted the aid of two accomplished experts to bring the book completely up to date with the estimation methods driving today's high-performance systems. A Classic Revisited Optimal and Robust Estimation: With an Introduction to Stochastic Control Theory, Second Edition reflects new developments in estimation theory and design techniques. As the title suggests, the major feature of this edition is the inclusion of robust methods. Three new chapters cover the robust Kalman filter, H-infinity filtering, and H-infinity filtering of discrete-time systems. Modern Tools for Tomorrow's Engineers This text overflows with examples that highlight practical applications of the theory and concepts. Design algorithms appear conveniently in tables, allowing students quick reference, easy implementation into software, and intuitive comparisons for selecting the best algorithm for a given application. In addition, downloadable MATLAB® code allows students to gain hands-on experience with industry-standard software tools for a wide variety of applications. This cutting-edge and highly interactive text makes teaching, and learning, estimation methods easier and more modern than ever.
Estimation and Control of Dynamical Systems
Author: Alain Bensoussan
Publisher: Springer
ISBN: 3319754564
Category : Mathematics
Languages : en
Pages : 552
Book Description
This book provides a comprehensive presentation of classical and advanced topics in estimation and control of dynamical systems with an emphasis on stochastic control. Many aspects which are not easily found in a single text are provided, such as connections between control theory and mathematical finance, as well as differential games. The book is self-contained and prioritizes concepts rather than full rigor, targeting scientists who want to use control theory in their research in applied mathematics, engineering, economics, and management science. Examples and exercises are included throughout, which will be useful for PhD courses and graduate courses in general. Dr. Alain Bensoussan is Lars Magnus Ericsson Chair at UT Dallas and Director of the International Center for Decision and Risk Analysis which develops risk management research as it pertains to large-investment industrial projects that involve new technologies, applications and markets. He is also Chair Professor at City University Hong Kong.
Publisher: Springer
ISBN: 3319754564
Category : Mathematics
Languages : en
Pages : 552
Book Description
This book provides a comprehensive presentation of classical and advanced topics in estimation and control of dynamical systems with an emphasis on stochastic control. Many aspects which are not easily found in a single text are provided, such as connections between control theory and mathematical finance, as well as differential games. The book is self-contained and prioritizes concepts rather than full rigor, targeting scientists who want to use control theory in their research in applied mathematics, engineering, economics, and management science. Examples and exercises are included throughout, which will be useful for PhD courses and graduate courses in general. Dr. Alain Bensoussan is Lars Magnus Ericsson Chair at UT Dallas and Director of the International Center for Decision and Risk Analysis which develops risk management research as it pertains to large-investment industrial projects that involve new technologies, applications and markets. He is also Chair Professor at City University Hong Kong.
Hidden Markov Models
Author: Robert J Elliott
Publisher: Springer Science & Business Media
ISBN: 0387848541
Category : Science
Languages : en
Pages : 374
Book Description
As more applications are found, interest in Hidden Markov Models continues to grow. Following comments and feedback from colleagues, students and other working with Hidden Markov Models the corrected 3rd printing of this volume contains clarifications, improvements and some new material, including results on smoothing for linear Gaussian dynamics. In Chapter 2 the derivation of the basic filters related to the Markov chain are each presented explicitly, rather than as special cases of one general filter. Furthermore, equations for smoothed estimates are given. The dynamics for the Kalman filter are derived as special cases of the authors’ general results and new expressions for a Kalman smoother are given. The Chapters on the control of Hidden Markov Chains are expanded and clarified. The revised Chapter 4 includes state estimation for discrete time Markov processes and Chapter 12 has a new section on robust control.
Publisher: Springer Science & Business Media
ISBN: 0387848541
Category : Science
Languages : en
Pages : 374
Book Description
As more applications are found, interest in Hidden Markov Models continues to grow. Following comments and feedback from colleagues, students and other working with Hidden Markov Models the corrected 3rd printing of this volume contains clarifications, improvements and some new material, including results on smoothing for linear Gaussian dynamics. In Chapter 2 the derivation of the basic filters related to the Markov chain are each presented explicitly, rather than as special cases of one general filter. Furthermore, equations for smoothed estimates are given. The dynamics for the Kalman filter are derived as special cases of the authors’ general results and new expressions for a Kalman smoother are given. The Chapters on the control of Hidden Markov Chains are expanded and clarified. The revised Chapter 4 includes state estimation for discrete time Markov processes and Chapter 12 has a new section on robust control.
Stationary Stochastic Processes for Scientists and Engineers
Author: Georg Lindgren
Publisher: CRC Press
ISBN: 1466586192
Category : Mathematics
Languages : en
Pages : 316
Book Description
Suitable for a one-semester course, this text teaches students how to use stochastic processes efficiently. Carefully balancing mathematical rigor and ease of exposition, the book provides students with a sufficient understanding of the theory and a practical appreciation of how it is used in real-life situations. Special emphasis is on the interpretation of various statistical models and concepts as well as the types of questions statistical analysis can answer. To enable hands-on practice, MATLAB code is available online.
Publisher: CRC Press
ISBN: 1466586192
Category : Mathematics
Languages : en
Pages : 316
Book Description
Suitable for a one-semester course, this text teaches students how to use stochastic processes efficiently. Carefully balancing mathematical rigor and ease of exposition, the book provides students with a sufficient understanding of the theory and a practical appreciation of how it is used in real-life situations. Special emphasis is on the interpretation of various statistical models and concepts as well as the types of questions statistical analysis can answer. To enable hands-on practice, MATLAB code is available online.