Author: Ciprian A Tudor
Publisher:
ISBN: 9789811264450
Category : Mathematics
Languages : en
Pages : 0
Book Description
The stochastic partial differential equations (SPDEs) arise in many applications of the probability theory. This monograph will focus on two particular (and probably the most known) equations: the stochastic heat equation and the stochastic wave equation. The focus is on the relationship between the solutions to the SPDEs and the fractional Brownian motion (and related processes). An important point of the analysis is the study of the asymptotic behavior of the p-variations of the solutions to the heat or wave equations driven by space-time Gaussian noise or by a Gaussian noise with a non-trivial correlation in space. The book is addressed to public with a reasonable background in probability theory. The idea is to keep it self-contained and avoid using of complex techniques. We also chose to insist on the basic properties of the random noise and to detail the construction of the Wiener integration with respect to them. The intention is to present the proofs complete and detailed.
Stochastic Partial Differential Equations with Additive Gaussian Noise
Author: Ciprian A Tudor
Publisher:
ISBN: 9789811264450
Category : Mathematics
Languages : en
Pages : 0
Book Description
The stochastic partial differential equations (SPDEs) arise in many applications of the probability theory. This monograph will focus on two particular (and probably the most known) equations: the stochastic heat equation and the stochastic wave equation. The focus is on the relationship between the solutions to the SPDEs and the fractional Brownian motion (and related processes). An important point of the analysis is the study of the asymptotic behavior of the p-variations of the solutions to the heat or wave equations driven by space-time Gaussian noise or by a Gaussian noise with a non-trivial correlation in space. The book is addressed to public with a reasonable background in probability theory. The idea is to keep it self-contained and avoid using of complex techniques. We also chose to insist on the basic properties of the random noise and to detail the construction of the Wiener integration with respect to them. The intention is to present the proofs complete and detailed.
Publisher:
ISBN: 9789811264450
Category : Mathematics
Languages : en
Pages : 0
Book Description
The stochastic partial differential equations (SPDEs) arise in many applications of the probability theory. This monograph will focus on two particular (and probably the most known) equations: the stochastic heat equation and the stochastic wave equation. The focus is on the relationship between the solutions to the SPDEs and the fractional Brownian motion (and related processes). An important point of the analysis is the study of the asymptotic behavior of the p-variations of the solutions to the heat or wave equations driven by space-time Gaussian noise or by a Gaussian noise with a non-trivial correlation in space. The book is addressed to public with a reasonable background in probability theory. The idea is to keep it self-contained and avoid using of complex techniques. We also chose to insist on the basic properties of the random noise and to detail the construction of the Wiener integration with respect to them. The intention is to present the proofs complete and detailed.
Stochastic Partial Differential Equations With Additive Gaussian Noise - Analysis And Inference
Author: Ciprian A Tudor
Publisher: World Scientific
ISBN: 9811264473
Category : Mathematics
Languages : en
Pages : 205
Book Description
The stochastic partial differential equations (SPDEs) arise in many applications of the probability theory. This monograph will focus on two particular (and probably the most known) equations: the stochastic heat equation and the stochastic wave equation.The focus is on the relationship between the solutions to the SPDEs and the fractional Brownian motion (and related processes). An important point of the analysis is the study of the asymptotic behavior of the p-variations of the solutions to the heat or wave equations driven by space-time Gaussian noise or by a Gaussian noise with a non-trivial correlation in space.The book is addressed to public with a reasonable background in probability theory. The idea is to keep it self-contained and avoid using of complex techniques. We also chose to insist on the basic properties of the random noise and to detail the construction of the Wiener integration with respect to them. The intention is to present the proofs complete and detailed.
Publisher: World Scientific
ISBN: 9811264473
Category : Mathematics
Languages : en
Pages : 205
Book Description
The stochastic partial differential equations (SPDEs) arise in many applications of the probability theory. This monograph will focus on two particular (and probably the most known) equations: the stochastic heat equation and the stochastic wave equation.The focus is on the relationship between the solutions to the SPDEs and the fractional Brownian motion (and related processes). An important point of the analysis is the study of the asymptotic behavior of the p-variations of the solutions to the heat or wave equations driven by space-time Gaussian noise or by a Gaussian noise with a non-trivial correlation in space.The book is addressed to public with a reasonable background in probability theory. The idea is to keep it self-contained and avoid using of complex techniques. We also chose to insist on the basic properties of the random noise and to detail the construction of the Wiener integration with respect to them. The intention is to present the proofs complete and detailed.
Applied Stochastic Differential Equations
Author: Simo Särkkä
Publisher: Cambridge University Press
ISBN: 1316510085
Category : Business & Economics
Languages : en
Pages : 327
Book Description
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.
Publisher: Cambridge University Press
ISBN: 1316510085
Category : Business & Economics
Languages : en
Pages : 327
Book Description
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.
Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA
Author: Elias T. Krainski
Publisher: CRC Press
ISBN: 0429629850
Category : Mathematics
Languages : en
Pages : 284
Book Description
Modeling spatial and spatio-temporal continuous processes is an important and challenging problem in spatial statistics. Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA describes in detail the stochastic partial differential equations (SPDE) approach for modeling continuous spatial processes with a Matérn covariance, which has been implemented using the integrated nested Laplace approximation (INLA) in the R-INLA package. Key concepts about modeling spatial processes and the SPDE approach are explained with examples using simulated data and real applications. This book has been authored by leading experts in spatial statistics, including the main developers of the INLA and SPDE methodologies and the R-INLA package. It also includes a wide range of applications: * Spatial and spatio-temporal models for continuous outcomes * Analysis of spatial and spatio-temporal point patterns * Coregionalization spatial and spatio-temporal models * Measurement error spatial models * Modeling preferential sampling * Spatial and spatio-temporal models with physical barriers * Survival analysis with spatial effects * Dynamic space-time regression * Spatial and spatio-temporal models for extremes * Hurdle models with spatial effects * Penalized Complexity priors for spatial models All the examples in the book are fully reproducible. Further information about this book, as well as the R code and datasets used, is available from the book website at http://www.r-inla.org/spde-book. The tools described in this book will be useful to researchers in many fields such as biostatistics, spatial statistics, environmental sciences, epidemiology, ecology and others. Graduate and Ph.D. students will also find this book and associated files a valuable resource to learn INLA and the SPDE approach for spatial modeling.
Publisher: CRC Press
ISBN: 0429629850
Category : Mathematics
Languages : en
Pages : 284
Book Description
Modeling spatial and spatio-temporal continuous processes is an important and challenging problem in spatial statistics. Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA describes in detail the stochastic partial differential equations (SPDE) approach for modeling continuous spatial processes with a Matérn covariance, which has been implemented using the integrated nested Laplace approximation (INLA) in the R-INLA package. Key concepts about modeling spatial processes and the SPDE approach are explained with examples using simulated data and real applications. This book has been authored by leading experts in spatial statistics, including the main developers of the INLA and SPDE methodologies and the R-INLA package. It also includes a wide range of applications: * Spatial and spatio-temporal models for continuous outcomes * Analysis of spatial and spatio-temporal point patterns * Coregionalization spatial and spatio-temporal models * Measurement error spatial models * Modeling preferential sampling * Spatial and spatio-temporal models with physical barriers * Survival analysis with spatial effects * Dynamic space-time regression * Spatial and spatio-temporal models for extremes * Hurdle models with spatial effects * Penalized Complexity priors for spatial models All the examples in the book are fully reproducible. Further information about this book, as well as the R code and datasets used, is available from the book website at http://www.r-inla.org/spde-book. The tools described in this book will be useful to researchers in many fields such as biostatistics, spatial statistics, environmental sciences, epidemiology, ecology and others. Graduate and Ph.D. students will also find this book and associated files a valuable resource to learn INLA and the SPDE approach for spatial modeling.
Stochastic Processes and Applications
Author: Grigorios A. Pavliotis
Publisher: Springer
ISBN: 1493913239
Category : Mathematics
Languages : en
Pages : 345
Book Description
This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.
Publisher: Springer
ISBN: 1493913239
Category : Mathematics
Languages : en
Pages : 345
Book Description
This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.
Advanced Mathematical Methods for Finance
Author: Julia Di Nunno
Publisher: Springer Science & Business Media
ISBN: 364218412X
Category : Mathematics
Languages : en
Pages : 532
Book Description
This book presents innovations in the mathematical foundations of financial analysis and numerical methods for finance and applications to the modeling of risk. The topics selected include measures of risk, credit contagion, insider trading, information in finance, stochastic control and its applications to portfolio choices and liquidation, models of liquidity, pricing, and hedging. The models presented are based on the use of Brownian motion, Lévy processes and jump diffusions. Moreover, fractional Brownian motion and ambit processes are also introduced at various levels. The chosen blend of topics gives an overview of the frontiers of mathematics for finance. New results, new methods and new models are all introduced in different forms according to the subject. Additionally, the existing literature on the topic is reviewed. The diversity of the topics makes the book suitable for graduate students, researchers and practitioners in the areas of financial modeling and quantitative finance. The chapters will also be of interest to experts in the financial market interested in new methods and products. This volume presents the results of the European ESF research networking program Advanced Mathematical Methods for Finance.
Publisher: Springer Science & Business Media
ISBN: 364218412X
Category : Mathematics
Languages : en
Pages : 532
Book Description
This book presents innovations in the mathematical foundations of financial analysis and numerical methods for finance and applications to the modeling of risk. The topics selected include measures of risk, credit contagion, insider trading, information in finance, stochastic control and its applications to portfolio choices and liquidation, models of liquidity, pricing, and hedging. The models presented are based on the use of Brownian motion, Lévy processes and jump diffusions. Moreover, fractional Brownian motion and ambit processes are also introduced at various levels. The chosen blend of topics gives an overview of the frontiers of mathematics for finance. New results, new methods and new models are all introduced in different forms according to the subject. Additionally, the existing literature on the topic is reviewed. The diversity of the topics makes the book suitable for graduate students, researchers and practitioners in the areas of financial modeling and quantitative finance. The chapters will also be of interest to experts in the financial market interested in new methods and products. This volume presents the results of the European ESF research networking program Advanced Mathematical Methods for Finance.
Bayesian Filtering and Smoothing
Author: Simo Särkkä
Publisher: Cambridge University Press
ISBN: 110703065X
Category : Computers
Languages : en
Pages : 255
Book Description
A unified Bayesian treatment of the state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models.
Publisher: Cambridge University Press
ISBN: 110703065X
Category : Computers
Languages : en
Pages : 255
Book Description
A unified Bayesian treatment of the state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models.
Image Processing and Analysis
Author: Tony F. Chan
Publisher: SIAM
ISBN: 089871589X
Category : Computers
Languages : en
Pages : 414
Book Description
This book develops the mathematical foundation of modern image processing and low-level computer vision, bridging contemporary mathematics with state-of-the-art methodologies in modern image processing, whilst organizing contemporary literature into a coherent and logical structure. The authors have integrated the diversity of modern image processing approaches by revealing the few common threads that connect them to Fourier and spectral analysis, the machinery that image processing has been traditionally built on. The text is systematic and well organized: the geometric, functional, and atomic structures of images are investigated, before moving to a rigorous development and analysis of several image processors. The book is comprehensive and integrative, covering the four most powerful classes of mathematical tools in contemporary image analysis and processing while exploring their intrinsic connections and integration. The material is balanced in theory and computation, following a solid theoretical analysis of model building and performance with computational implementation and numerical examples.
Publisher: SIAM
ISBN: 089871589X
Category : Computers
Languages : en
Pages : 414
Book Description
This book develops the mathematical foundation of modern image processing and low-level computer vision, bridging contemporary mathematics with state-of-the-art methodologies in modern image processing, whilst organizing contemporary literature into a coherent and logical structure. The authors have integrated the diversity of modern image processing approaches by revealing the few common threads that connect them to Fourier and spectral analysis, the machinery that image processing has been traditionally built on. The text is systematic and well organized: the geometric, functional, and atomic structures of images are investigated, before moving to a rigorous development and analysis of several image processors. The book is comprehensive and integrative, covering the four most powerful classes of mathematical tools in contemporary image analysis and processing while exploring their intrinsic connections and integration. The material is balanced in theory and computation, following a solid theoretical analysis of model building and performance with computational implementation and numerical examples.
Collectanea Mathematica
Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 936
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 936
Book Description
Analysis of Stochastic Partial Differential Equations
Author: Davar Khoshnevisan
Publisher: American Mathematical Soc.
ISBN: 147041547X
Category : Mathematics
Languages : en
Pages : 127
Book Description
The general area of stochastic PDEs is interesting to mathematicians because it contains an enormous number of challenging open problems. There is also a great deal of interest in this topic because it has deep applications in disciplines that range from applied mathematics, statistical mechanics, and theoretical physics, to theoretical neuroscience, theory of complex chemical reactions [including polymer science], fluid dynamics, and mathematical finance. The stochastic PDEs that are studied in this book are similar to the familiar PDE for heat in a thin rod, but with the additional restriction that the external forcing density is a two-parameter stochastic process, or what is more commonly the case, the forcing is a "random noise," also known as a "generalized random field." At several points in the lectures, there are examples that highlight the phenomenon that stochastic PDEs are not a subset of PDEs. In fact, the introduction of noise in some partial differential equations can bring about not a small perturbation, but truly fundamental changes to the system that the underlying PDE is attempting to describe. The topics covered include a brief introduction to the stochastic heat equation, structure theory for the linear stochastic heat equation, and an in-depth look at intermittency properties of the solution to semilinear stochastic heat equations. Specific topics include stochastic integrals à la Norbert Wiener, an infinite-dimensional Itô-type stochastic integral, an example of a parabolic Anderson model, and intermittency fronts. There are many possible approaches to stochastic PDEs. The selection of topics and techniques presented here are informed by the guiding example of the stochastic heat equation. A co-publication of the AMS and CBMS.
Publisher: American Mathematical Soc.
ISBN: 147041547X
Category : Mathematics
Languages : en
Pages : 127
Book Description
The general area of stochastic PDEs is interesting to mathematicians because it contains an enormous number of challenging open problems. There is also a great deal of interest in this topic because it has deep applications in disciplines that range from applied mathematics, statistical mechanics, and theoretical physics, to theoretical neuroscience, theory of complex chemical reactions [including polymer science], fluid dynamics, and mathematical finance. The stochastic PDEs that are studied in this book are similar to the familiar PDE for heat in a thin rod, but with the additional restriction that the external forcing density is a two-parameter stochastic process, or what is more commonly the case, the forcing is a "random noise," also known as a "generalized random field." At several points in the lectures, there are examples that highlight the phenomenon that stochastic PDEs are not a subset of PDEs. In fact, the introduction of noise in some partial differential equations can bring about not a small perturbation, but truly fundamental changes to the system that the underlying PDE is attempting to describe. The topics covered include a brief introduction to the stochastic heat equation, structure theory for the linear stochastic heat equation, and an in-depth look at intermittency properties of the solution to semilinear stochastic heat equations. Specific topics include stochastic integrals à la Norbert Wiener, an infinite-dimensional Itô-type stochastic integral, an example of a parabolic Anderson model, and intermittency fronts. There are many possible approaches to stochastic PDEs. The selection of topics and techniques presented here are informed by the guiding example of the stochastic heat equation. A co-publication of the AMS and CBMS.