Stochastic Optimization in Continuous Time

Stochastic Optimization in Continuous Time PDF Author: Fwu-Ranq Chang
Publisher: Cambridge University Press
ISBN: 1139452223
Category : Business & Economics
Languages : en
Pages : 346

Get Book Here

Book Description
First published in 2004, this is a rigorous but user-friendly book on the application of stochastic control theory to economics. A distinctive feature of the book is that mathematical concepts are introduced in a language and terminology familiar to graduate students of economics. The standard topics of many mathematics, economics and finance books are illustrated with real examples documented in the economic literature. Moreover, the book emphasises the dos and don'ts of stochastic calculus, cautioning the reader that certain results and intuitions cherished by many economists do not extend to stochastic models. A special chapter (Chapter 5) is devoted to exploring various methods of finding a closed-form representation of the value function of a stochastic control problem, which is essential for ascertaining the optimal policy functions. The book also includes many practice exercises for the reader. Notes and suggested readings are provided at the end of each chapter for more references and possible extensions.

Continuous-time Stochastic Control and Optimization with Financial Applications

Continuous-time Stochastic Control and Optimization with Financial Applications PDF Author: Huyên Pham
Publisher: Springer Science & Business Media
ISBN: 3540895000
Category : Mathematics
Languages : en
Pages : 243

Get Book Here

Book Description
Stochastic optimization problems arise in decision-making problems under uncertainty, and find various applications in economics and finance. On the other hand, problems in finance have recently led to new developments in the theory of stochastic control. This volume provides a systematic treatment of stochastic optimization problems applied to finance by presenting the different existing methods: dynamic programming, viscosity solutions, backward stochastic differential equations, and martingale duality methods. The theory is discussed in the context of recent developments in this field, with complete and detailed proofs, and is illustrated by means of concrete examples from the world of finance: portfolio allocation, option hedging, real options, optimal investment, etc. This book is directed towards graduate students and researchers in mathematical finance, and will also benefit applied mathematicians interested in financial applications and practitioners wishing to know more about the use of stochastic optimization methods in finance.

Stochastic Control in Discrete and Continuous Time

Stochastic Control in Discrete and Continuous Time PDF Author: Atle Seierstad
Publisher: Springer Science & Business Media
ISBN: 0387766162
Category : Mathematics
Languages : en
Pages : 299

Get Book Here

Book Description
This book contains an introduction to three topics in stochastic control: discrete time stochastic control, i. e. , stochastic dynamic programming (Chapter 1), piecewise - terministic control problems (Chapter 3), and control of Ito diffusions (Chapter 4). The chapters include treatments of optimal stopping problems. An Appendix - calls material from elementary probability theory and gives heuristic explanations of certain more advanced tools in probability theory. The book will hopefully be of interest to students in several ?elds: economics, engineering, operations research, ?nance, business, mathematics. In economics and business administration, graduate students should readily be able to read it, and the mathematical level can be suitable for advanced undergraduates in mathem- ics and science. The prerequisites for reading the book are only a calculus course and a course in elementary probability. (Certain technical comments may demand a slightly better background. ) As this book perhaps (and hopefully) will be read by readers with widely diff- ing backgrounds, some general advice may be useful: Don’t be put off if paragraphs, comments, or remarks contain material of a seemingly more technical nature that you don’t understand. Just skip such material and continue reading, it will surely not be needed in order to understand the main ideas and results. The presentation avoids the use of measure theory.

Numerical Methods for Stochastic Control Problems in Continuous Time

Numerical Methods for Stochastic Control Problems in Continuous Time PDF Author: Harold Kushner
Publisher: Springer Science & Business Media
ISBN: 146130007X
Category : Mathematics
Languages : en
Pages : 480

Get Book Here

Book Description
Stochastic control is a very active area of research. This monograph, written by two leading authorities in the field, has been updated to reflect the latest developments. It covers effective numerical methods for stochastic control problems in continuous time on two levels, that of practice and that of mathematical development. It is broadly accessible for graduate students and researchers.

Stochastic Optimization Models in Finance

Stochastic Optimization Models in Finance PDF Author: William T. Ziemba
Publisher: World Scientific
ISBN: 981256800X
Category : Business & Economics
Languages : en
Pages : 756

Get Book Here

Book Description
A reprint of one of the classic volumes on portfolio theory and investment, this book has been used by the leading professors at universities such as Stanford, Berkeley, and Carnegie-Mellon. It contains five parts, each with a review of the literature and about 150 pages of computational and review exercises and further in-depth, challenging problems.Frequently referenced and highly usable, the material remains as fresh and relevant for a portfolio theory course as ever.

Introduction to Stochastic Search and Optimization

Introduction to Stochastic Search and Optimization PDF Author: James C. Spall
Publisher: John Wiley & Sons
ISBN: 0471441902
Category : Mathematics
Languages : en
Pages : 620

Get Book Here

Book Description
* Unique in its survey of the range of topics. * Contains a strong, interdisciplinary format that will appeal to both students and researchers. * Features exercises and web links to software and data sets.

Contract Theory in Continuous-Time Models

Contract Theory in Continuous-Time Models PDF Author: Jakša Cvitanic
Publisher: Springer Science & Business Media
ISBN: 3642141994
Category : Mathematics
Languages : en
Pages : 258

Get Book Here

Book Description
In recent years there has been a significant increase of interest in continuous-time Principal-Agent models, or contract theory, and their applications. Continuous-time models provide a powerful and elegant framework for solving stochastic optimization problems of finding the optimal contracts between two parties, under various assumptions on the information they have access to, and the effect they have on the underlying "profit/loss" values. This monograph surveys recent results of the theory in a systematic way, using the approach of the so-called Stochastic Maximum Principle, in models driven by Brownian Motion. Optimal contracts are characterized via a system of Forward-Backward Stochastic Differential Equations. In a number of interesting special cases these can be solved explicitly, enabling derivation of many qualitative economic conclusions.

Stochastic Multi-Stage Optimization

Stochastic Multi-Stage Optimization PDF Author: Pierre Carpentier
Publisher:
ISBN: 9783319181394
Category :
Languages : en
Pages :

Get Book Here

Book Description
The focus of the present volume is stochastic optimization of dynamical systems in discrete time where - by concentrating on the role of information regarding optimization problems - it discusses the related discretization issues. There is a growing need to tackle uncertainty in applications of optimization. For example the massive introduction of renewable energies in power systems challenges traditional ways to manage them. This book lays out basic and advanced tools to handle and numerically solve such problems and thereby is building a bridge between Stochastic Programming and Stochastic Control. It is intended for graduates readers and scholars in optimization or stochastic control, as well as engineers with a background in applied mathematics.

Continuous-Time Markov Chains and Applications

Continuous-Time Markov Chains and Applications PDF Author: G. George Yin
Publisher: Springer Science & Business Media
ISBN: 1461443466
Category : Mathematics
Languages : en
Pages : 442

Get Book Here

Book Description
This book gives a systematic treatment of singularly perturbed systems that naturally arise in control and optimization, queueing networks, manufacturing systems, and financial engineering. It presents results on asymptotic expansions of solutions of Komogorov forward and backward equations, properties of functional occupation measures, exponential upper bounds, and functional limit results for Markov chains with weak and strong interactions. To bridge the gap between theory and applications, a large portion of the book is devoted to applications in controlled dynamic systems, production planning, and numerical methods for controlled Markovian systems with large-scale and complex structures in the real-world problems. This second edition has been updated throughout and includes two new chapters on asymptotic expansions of solutions for backward equations and hybrid LQG problems. The chapters on analytic and probabilistic properties of two-time-scale Markov chains have been almost completely rewritten and the notation has been streamlined and simplified. This book is written for applied mathematicians, engineers, operations researchers, and applied scientists. Selected material from the book can also be used for a one semester advanced graduate-level course in applied probability and stochastic processes.

Multistage Stochastic Optimization

Multistage Stochastic Optimization PDF Author: Georg Ch. Pflug
Publisher: Springer
ISBN: 3319088432
Category : Business & Economics
Languages : en
Pages : 309

Get Book Here

Book Description
Multistage stochastic optimization problems appear in many ways in finance, insurance, energy production and trading, logistics and transportation, among other areas. They describe decision situations under uncertainty and with a longer planning horizon. This book contains a comprehensive treatment of today’s state of the art in multistage stochastic optimization. It covers the mathematical backgrounds of approximation theory as well as numerous practical algorithms and examples for the generation and handling of scenario trees. A special emphasis is put on estimation and bounding of the modeling error using novel distance concepts, on time consistency and the role of model ambiguity in the decision process. An extensive treatment of examples from electricity production, asset liability management and inventory control concludes the book.