Stochastic Models: Estimation and Control: v. 2

Stochastic Models: Estimation and Control: v. 2 PDF Author: Maybeck
Publisher: Academic Press
ISBN: 0080956513
Category : Mathematics
Languages : en
Pages : 307

Get Book Here

Book Description
Stochastic Models: Estimation and Control: v. 2

Stochastic Models: Estimation and Control: v. 2

Stochastic Models: Estimation and Control: v. 2 PDF Author: Maybeck
Publisher: Academic Press
ISBN: 0080956513
Category : Mathematics
Languages : en
Pages : 307

Get Book Here

Book Description
Stochastic Models: Estimation and Control: v. 2

Stochastic Models, Estimation, and Control

Stochastic Models, Estimation, and Control PDF Author: Peter S. Maybeck
Publisher: Academic Press
ISBN: 0080960030
Category : Mathematics
Languages : en
Pages : 311

Get Book Here

Book Description
This volume builds upon the foundations set in Volumes 1 and 2. Chapter 13 introduces the basic concepts of stochastic control and dynamic programming as the fundamental means of synthesizing optimal stochastic control laws.

Hidden Markov Models

Hidden Markov Models PDF Author: Robert J Elliott
Publisher: Springer Science & Business Media
ISBN: 0387848541
Category : Science
Languages : en
Pages : 374

Get Book Here

Book Description
As more applications are found, interest in Hidden Markov Models continues to grow. Following comments and feedback from colleagues, students and other working with Hidden Markov Models the corrected 3rd printing of this volume contains clarifications, improvements and some new material, including results on smoothing for linear Gaussian dynamics. In Chapter 2 the derivation of the basic filters related to the Markov chain are each presented explicitly, rather than as special cases of one general filter. Furthermore, equations for smoothed estimates are given. The dynamics for the Kalman filter are derived as special cases of the authors’ general results and new expressions for a Kalman smoother are given. The Chapters on the control of Hidden Markov Chains are expanded and clarified. The revised Chapter 4 includes state estimation for discrete time Markov processes and Chapter 12 has a new section on robust control.

Stochastic Models: Estimation and Control: v. 1

Stochastic Models: Estimation and Control: v. 1 PDF Author: Maybeck
Publisher: Academic Press
ISBN: 0080956505
Category : Mathematics
Languages : en
Pages : 445

Get Book Here

Book Description
Stochastic Models: Estimation and Control: v. 1

Stochastic Systems

Stochastic Systems PDF Author: P. R. Kumar
Publisher: SIAM
ISBN: 1611974259
Category : Mathematics
Languages : en
Pages : 371

Get Book Here

Book Description
Since its origins in the 1940s, the subject of decision making under uncertainty has grown into a diversified area with application in several branches of engineering and in those areas of the social sciences concerned with policy analysis and prescription. These approaches required a computing capacity too expensive for the time, until the ability to collect and process huge quantities of data engendered an explosion of work in the area. This book provides succinct and rigorous treatment of the foundations of stochastic control; a unified approach to filtering, estimation, prediction, and stochastic and adaptive control; and the conceptual framework necessary to understand current trends in stochastic control, data mining, machine learning, and robotics.

An Introduction to Stochastic Modeling

An Introduction to Stochastic Modeling PDF Author: Howard M. Taylor
Publisher: Academic Press
ISBN: 1483269272
Category : Mathematics
Languages : en
Pages : 410

Get Book Here

Book Description
An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.

Stochastic Modelling of Social Processes

Stochastic Modelling of Social Processes PDF Author: Andreas Diekmann
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 362

Get Book Here

Book Description


Partially Observed Markov Decision Processes

Partially Observed Markov Decision Processes PDF Author: Vikram Krishnamurthy
Publisher: Cambridge University Press
ISBN: 1107134609
Category : Mathematics
Languages : en
Pages : 491

Get Book Here

Book Description
This book covers formulation, algorithms, and structural results of partially observed Markov decision processes, whilst linking theory to real-world applications in controlled sensing. Computations are kept to a minimum, enabling students and researchers in engineering, operations research, and economics to understand the methods and determine the structure of their optimal solution.

Applied Stochastic Differential Equations

Applied Stochastic Differential Equations PDF Author: Simo Särkkä
Publisher: Cambridge University Press
ISBN: 1316510085
Category : Business & Economics
Languages : en
Pages : 327

Get Book Here

Book Description
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.

Linear Systems Theory

Linear Systems Theory PDF Author: João P. Hespanha
Publisher: Princeton University Press
ISBN: 0691179573
Category : Mathematics
Languages : en
Pages : 352

Get Book Here

Book Description
A fully updated textbook on linear systems theory Linear systems theory is the cornerstone of control theory and a well-established discipline that focuses on linear differential equations from the perspective of control and estimation. This updated second edition of Linear Systems Theory covers the subject's key topics in a unique lecture-style format, making the book easy to use for instructors and students. João Hespanha looks at system representation, stability, controllability and state feedback, observability and state estimation, and realization theory. He provides the background for advanced modern control design techniques and feedback linearization and examines advanced foundational topics, such as multivariable poles and zeros and LQG/LQR. The textbook presents only the most essential mathematical derivations and places comments, discussion, and terminology in sidebars so that readers can follow the core material easily and without distraction. Annotated proofs with sidebars explain the techniques of proof construction, including contradiction, contraposition, cycles of implications to prove equivalence, and the difference between necessity and sufficiency. Annotated theoretical developments also use sidebars to discuss relevant commands available in MATLAB, allowing students to understand these tools. This second edition contains a large number of new practice exercises with solutions. Based on typical problems, these exercises guide students to succinct and precise answers, helping to clarify issues and consolidate knowledge. The book's balanced chapters can each be covered in approximately two hours of lecture time, simplifying course planning and student review. Easy-to-use textbook in unique lecture-style format Sidebars explain topics in further detail Annotated proofs and discussions of MATLAB commands Balanced chapters can each be taught in two hours of course lecture New practice exercises with solutions included