Stochastic Modeling

Stochastic Modeling PDF Author: Barry L. Nelson
Publisher: Courier Corporation
ISBN: 0486139948
Category : Mathematics
Languages : en
Pages : 338

Get Book Here

Book Description
Coherent introduction to techniques also offers a guide to the mathematical, numerical, and simulation tools of systems analysis. Includes formulation of models, analysis, and interpretation of results. 1995 edition.

Stochastic Modeling

Stochastic Modeling PDF Author: Barry L. Nelson
Publisher: Courier Corporation
ISBN: 0486139948
Category : Mathematics
Languages : en
Pages : 338

Get Book Here

Book Description
Coherent introduction to techniques also offers a guide to the mathematical, numerical, and simulation tools of systems analysis. Includes formulation of models, analysis, and interpretation of results. 1995 edition.

Stochastic Modelling and Analysis

Stochastic Modelling and Analysis PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Introduction to Modeling and Analysis of Stochastic Systems

Introduction to Modeling and Analysis of Stochastic Systems PDF Author: V. G. Kulkarni
Publisher: Springer
ISBN: 1441917721
Category : Mathematics
Languages : en
Pages : 323

Get Book Here

Book Description
This book provides a self-contained review of all the relevant topics in probability theory. A software package called MAXIM, which runs on MATLAB, is made available for downloading. Vidyadhar G. Kulkarni is Professor of Operations Research at the University of North Carolina at Chapel Hill.

An Introduction to Stochastic Modeling

An Introduction to Stochastic Modeling PDF Author: Howard M. Taylor
Publisher: Academic Press
ISBN: 1483269272
Category : Mathematics
Languages : en
Pages : 410

Get Book Here

Book Description
An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.

Stochastic Modeling

Stochastic Modeling PDF Author: Nicolas Lanchier
Publisher: Springer
ISBN: 3319500384
Category : Mathematics
Languages : en
Pages : 305

Get Book Here

Book Description
Three coherent parts form the material covered in this text, portions of which have not been widely covered in traditional textbooks. In this coverage the reader is quickly introduced to several different topics enriched with 175 exercises which focus on real-world problems. Exercises range from the classics of probability theory to more exotic research-oriented problems based on numerical simulations. Intended for graduate students in mathematics and applied sciences, the text provides the tools and training needed to write and use programs for research purposes. The first part of the text begins with a brief review of measure theory and revisits the main concepts of probability theory, from random variables to the standard limit theorems. The second part covers traditional material on stochastic processes, including martingales, discrete-time Markov chains, Poisson processes, and continuous-time Markov chains. The theory developed is illustrated by a variety of examples surrounding applications such as the gambler’s ruin chain, branching processes, symmetric random walks, and queueing systems. The third, more research-oriented part of the text, discusses special stochastic processes of interest in physics, biology, and sociology. Additional emphasis is placed on minimal models that have been used historically to develop new mathematical techniques in the field of stochastic processes: the logistic growth process, the Wright –Fisher model, Kingman’s coalescent, percolation models, the contact process, and the voter model. Further treatment of the material explains how these special processes are connected to each other from a modeling perspective as well as their simulation capabilities in C and MatlabTM.

Stochastic Simulation: Algorithms and Analysis

Stochastic Simulation: Algorithms and Analysis PDF Author: Søren Asmussen
Publisher: Springer Science & Business Media
ISBN: 0387690336
Category : Mathematics
Languages : en
Pages : 490

Get Book Here

Book Description
Sampling-based computational methods have become a fundamental part of the numerical toolset of practitioners and researchers across an enormous number of different applied domains and academic disciplines. This book provides a broad treatment of such sampling-based methods, as well as accompanying mathematical analysis of the convergence properties of the methods discussed. The reach of the ideas is illustrated by discussing a wide range of applications and the models that have found wide usage. The first half of the book focuses on general methods; the second half discusses model-specific algorithms. Exercises and illustrations are included.

Bayesian Analysis of Stochastic Process Models

Bayesian Analysis of Stochastic Process Models PDF Author: David Insua
Publisher: John Wiley & Sons
ISBN: 1118304039
Category : Mathematics
Languages : en
Pages : 315

Get Book Here

Book Description
Bayesian analysis of complex models based on stochastic processes has in recent years become a growing area. This book provides a unified treatment of Bayesian analysis of models based on stochastic processes, covering the main classes of stochastic processing including modeling, computational, inference, forecasting, decision making and important applied models. Key features: Explores Bayesian analysis of models based on stochastic processes, providing a unified treatment. Provides a thorough introduction for research students. Computational tools to deal with complex problems are illustrated along with real life case studies Looks at inference, prediction and decision making. Researchers, graduate and advanced undergraduate students interested in stochastic processes in fields such as statistics, operations research (OR), engineering, finance, economics, computer science and Bayesian analysis will benefit from reading this book. With numerous applications included, practitioners of OR, stochastic modelling and applied statistics will also find this book useful.

Stochastic Models: Analysis and Applications

Stochastic Models: Analysis and Applications PDF Author: B. R. Bhat
Publisher: New Age International
ISBN: 9788122412284
Category : Mathematical statistics
Languages : en
Pages : 412

Get Book Here

Book Description
The Book Presents A Systematic Exposition Of The Basic Theory And Applications Of Stochastic Models.Emphasising The Modelling Rather Than Mathematical Aspects Of Stochastic Processes, The Book Bridges The Gap Between The Theory And Applications Of These Processes.The Basic Building Blocks Of Model Construction Are Explained In A Step By Step Manner, Starting From The Simplest Model Of Random Walk And Proceeding Gradually To More Complicated Models. Several Examples Are Given Throughout The Text To Illustrate Important Analytical Properties As Well As To Provide Applications.The Book Also Includes A Detailed Chapter On Inference For Stochastic Processes. This Chapter Highlights Some Of The Recent Developments In The Subject And Explains Them Through Illustrative Examples.An Important Feature Of The Book Is The Complements And Problems Section At The End Of Each Chapter Which Presents (I) Additional Properties Of The Model, (Ii) Extensions Of The Model, And (Iii) Applications Of The Model To Different Areas.With All These Features, This Is An Invaluable Text For Post-Graduate Students Of Statistics, Mathematics And Operation Research.

Stochastic Models in Reliability and Maintenance

Stochastic Models in Reliability and Maintenance PDF Author: Shunji Osaki
Publisher: Springer Science & Business Media
ISBN: 3540248080
Category : Mathematics
Languages : en
Pages : 338

Get Book Here

Book Description
Our daily lives can be maintained by the high-technology systems. Computer systems are typical examples of such systems. We can enjoy our modern lives by using many computer systems. Much more importantly, we have to maintain such systems without failure, but cannot predict when such systems will fail and how to fix such systems without delay. A stochastic process is a set of outcomes of a random experiment indexed by time, and is one of the key tools needed to analyze the future behavior quantitatively. Reliability and maintainability technologies are of great interest and importance to the maintenance of such systems. Many mathematical models have been and will be proposed to describe reliability and maintainability systems by using the stochastic processes. The theme of this book is "Stochastic Models in Reliability and Main tainability. " This book consists of 12 chapters on the theme above from the different viewpoints of stochastic modeling. Chapter 1 is devoted to "Renewal Processes," under which classical renewal theory is surveyed and computa tional methods are described. Chapter 2 discusses "Stochastic Orders," and in it some definitions and concepts on stochastic orders are described and ag ing properties can be characterized by stochastic orders. Chapter 3 is devoted to "Classical Maintenance Models," under which the so-called age, block and other replacement models are surveyed. Chapter 4 discusses "Modeling Plant Maintenance," describing how maintenance practice can be carried out for plant maintenance.

Introduction to Matrix Analytic Methods in Stochastic Modeling

Introduction to Matrix Analytic Methods in Stochastic Modeling PDF Author: G. Latouche
Publisher: SIAM
ISBN: 0898714257
Category : Mathematics
Languages : en
Pages : 331

Get Book Here

Book Description
Presents the basic mathematical ideas and algorithms of the matrix analytic theory in a readable, up-to-date, and comprehensive manner.