Stochastic Local Search Algorithms for Multiobjective Combinatorial Optimization

Stochastic Local Search Algorithms for Multiobjective Combinatorial Optimization PDF Author: Luis F. Paquete
Publisher: IOS Press
ISBN: 9781586035969
Category : Business & Economics
Languages : en
Pages : 394

Get Book Here

Book Description
Stochastic Local Search algorithms were shown to give state-of-the-art results for many other problems, but little is known on how to design and analyse them for Multiobjective Combinatorial Optimization Problems. This book aims to fill this gap. It defines two search models that correspond to two distinct ways of tackling MCOPs by SLS algorithms."

Stochastic Local Search Algorithms for Multiobjective Combinatorial Optimization

Stochastic Local Search Algorithms for Multiobjective Combinatorial Optimization PDF Author: Luis F. Paquete
Publisher: IOS Press
ISBN: 9781586035969
Category : Business & Economics
Languages : en
Pages : 394

Get Book Here

Book Description
Stochastic Local Search algorithms were shown to give state-of-the-art results for many other problems, but little is known on how to design and analyse them for Multiobjective Combinatorial Optimization Problems. This book aims to fill this gap. It defines two search models that correspond to two distinct ways of tackling MCOPs by SLS algorithms."

Stochastic Local Search Algorithms for Multiobjective Combinatorial Optimization

Stochastic Local Search Algorithms for Multiobjective Combinatorial Optimization PDF Author: Luís F. Paquete
Publisher:
ISBN: 9783898382953
Category : Combinatorial optimization
Languages : en
Pages : 371

Get Book Here

Book Description


Engineering Stochastic Local Search Algorithms. Designing, Implementing and Analyzing Effective Heuristics

Engineering Stochastic Local Search Algorithms. Designing, Implementing and Analyzing Effective Heuristics PDF Author: Thomas Stützle
Publisher: Springer
ISBN: 3642037518
Category : Computers
Languages : en
Pages : 165

Get Book Here

Book Description
Stochastic local search (SLS) algorithms are established tools for the solution of computationally hard problems arising in computer science, business adm- istration, engineering, biology, and various other disciplines. To a large extent, their success is due to their conceptual simplicity, broad applicability and high performance for many important problems studied in academia and enco- tered in real-world applications. SLS methods include a wide spectrum of te- niques, ranging from constructive search procedures and iterative improvement algorithms to more complex SLS methods, such as ant colony optimization, evolutionary computation, iterated local search, memetic algorithms, simulated annealing, tabu search, and variable neighborhood search. Historically, the development of e?ective SLS algorithms has been guided to a large extent by experience and intuition. In recent years, it has become - creasingly evident that success with SLS algorithms depends not merely on the adoption and e?cient implementation of the most appropriate SLS technique for a given problem, but also on the mastery of a more complex algorithm - gineering process. Challenges in SLS algorithm development arise partly from the complexity of the problems being tackled and in part from the many - grees of freedom researchers and practitioners encounter when developing SLS algorithms. Crucial aspects in the SLS algorithm development comprise al- rithm design, empirical analysis techniques, problem-speci?c background, and background knowledge in several key disciplines and areas, including computer science, operations research, arti?cial intelligence, and statistics.

Handbook of Approximation Algorithms and Metaheuristics

Handbook of Approximation Algorithms and Metaheuristics PDF Author: Teofilo F. Gonzalez
Publisher: CRC Press
ISBN: 1351236415
Category : Computers
Languages : en
Pages : 817

Get Book Here

Book Description
Handbook of Approximation Algorithms and Metaheuristics, Second Edition reflects the tremendous growth in the field, over the past two decades. Through contributions from leading experts, this handbook provides a comprehensive introduction to the underlying theory and methodologies, as well as the various applications of approximation algorithms and metaheuristics. Volume 1 of this two-volume set deals primarily with methodologies and traditional applications. It includes restriction, relaxation, local ratio, approximation schemes, randomization, tabu search, evolutionary computation, local search, neural networks, and other metaheuristics. It also explores multi-objective optimization, reoptimization, sensitivity analysis, and stability. Traditional applications covered include: bin packing, multi-dimensional packing, Steiner trees, traveling salesperson, scheduling, and related problems. Volume 2 focuses on the contemporary and emerging applications of methodologies to problems in combinatorial optimization, computational geometry and graphs problems, as well as in large-scale and emerging application areas. It includes approximation algorithms and heuristics for clustering, networks (sensor and wireless), communication, bioinformatics search, streams, virtual communities, and more. About the Editor Teofilo F. Gonzalez is a professor emeritus of computer science at the University of California, Santa Barbara. He completed his Ph.D. in 1975 from the University of Minnesota. He taught at the University of Oklahoma, the Pennsylvania State University, and the University of Texas at Dallas, before joining the UCSB computer science faculty in 1984. He spent sabbatical leaves at the Monterrey Institute of Technology and Higher Education and Utrecht University. He is known for his highly cited pioneering research in the hardness of approximation; for his sublinear and best possible approximation algorithm for k-tMM clustering; for introducing the open-shop scheduling problem as well as algorithms for its solution that have found applications in numerous research areas; as well as for his research on problems in the areas of job scheduling, graph algorithms, computational geometry, message communication, wire routing, etc.

Evolutionary Multi-Criterion Optimization

Evolutionary Multi-Criterion Optimization PDF Author: Shigeru Obayashi
Publisher: Springer Science & Business Media
ISBN: 3540709274
Category : Computers
Languages : en
Pages : 972

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 4th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2007, held in Matsushima, Japan in March 2007. The 65 revised full papers presented together with 4 invited papers are organized in topical sections on algorithm design, algorithm improvements, alternative methods, applications, engineering design, many objectives, objective handling, and performance assessments.

Multi-Objective Combinatorial Optimization Problems and Solution Methods

Multi-Objective Combinatorial Optimization Problems and Solution Methods PDF Author: Mehdi Toloo
Publisher: Academic Press
ISBN: 0128238003
Category : Science
Languages : en
Pages : 316

Get Book Here

Book Description
Multi-Objective Combinatorial Optimization Problems and Solution Methods discusses the results of a recent multi-objective combinatorial optimization achievement that considered metaheuristic, mathematical programming, heuristic, hyper heuristic and hybrid approaches. In other words, the book presents various multi-objective combinatorial optimization issues that may benefit from different methods in theory and practice. Combinatorial optimization problems appear in a wide range of applications in operations research, engineering, biological sciences and computer science, hence many optimization approaches have been developed that link the discrete universe to the continuous universe through geometric, analytic and algebraic techniques. This book covers this important topic as computational optimization has become increasingly popular as design optimization and its applications in engineering and industry have become ever more important due to more stringent design requirements in modern engineering practice. - Presents a collection of the most up-to-date research, providing a complete overview of multi-objective combinatorial optimization problems and applications - Introduces new approaches to handle different engineering and science problems, providing the field with a collection of related research not already covered in the primary literature - Demonstrates the efficiency and power of the various algorithms, problems and solutions, including numerous examples that illustrate concepts and algorithms

Advances in Multi-Objective Nature Inspired Computing

Advances in Multi-Objective Nature Inspired Computing PDF Author: Carlos Coello Coello
Publisher: Springer Science & Business Media
ISBN: 364211217X
Category : Mathematics
Languages : en
Pages : 204

Get Book Here

Book Description
The purpose of this book is to collect contributions that deal with the use of nature inspired metaheuristics for solving multi-objective combinatorial optimization problems. Such a collection intends to provide an overview of the state-of-the-art developments in this field, with the aim of motivating more researchers in operations research, engineering, and computer science, to do research in this area. As such, this book is expected to become a valuable reference for those wishing to do research on the use of nature inspired metaheuristics for solving multi-objective combinatorial optimization problems.

Handbook of Approximation Algorithms and Metaheuristics

Handbook of Approximation Algorithms and Metaheuristics PDF Author: Teofilo F. Gonzalez
Publisher: CRC Press
ISBN: 1351236407
Category : Computers
Languages : en
Pages : 840

Get Book Here

Book Description
Handbook of Approximation Algorithms and Metaheuristics, Second Edition reflects the tremendous growth in the field, over the past two decades. Through contributions from leading experts, this handbook provides a comprehensive introduction to the underlying theory and methodologies, as well as the various applications of approximation algorithms and metaheuristics. Volume 1 of this two-volume set deals primarily with methodologies and traditional applications. It includes restriction, relaxation, local ratio, approximation schemes, randomization, tabu search, evolutionary computation, local search, neural networks, and other metaheuristics. It also explores multi-objective optimization, reoptimization, sensitivity analysis, and stability. Traditional applications covered include: bin packing, multi-dimensional packing, Steiner trees, traveling salesperson, scheduling, and related problems. Volume 2 focuses on the contemporary and emerging applications of methodologies to problems in combinatorial optimization, computational geometry and graphs problems, as well as in large-scale and emerging application areas. It includes approximation algorithms and heuristics for clustering, networks (sensor and wireless), communication, bioinformatics search, streams, virtual communities, and more. About the Editor Teofilo F. Gonzalez is a professor emeritus of computer science at the University of California, Santa Barbara. He completed his Ph.D. in 1975 from the University of Minnesota. He taught at the University of Oklahoma, the Pennsylvania State University, and the University of Texas at Dallas, before joining the UCSB computer science faculty in 1984. He spent sabbatical leaves at the Monterrey Institute of Technology and Higher Education and Utrecht University. He is known for his highly cited pioneering research in the hardness of approximation; for his sublinear and best possible approximation algorithm for k-tMM clustering; for introducing the open-shop scheduling problem as well as algorithms for its solution that have found applications in numerous research areas; as well as for his research on problems in the areas of job scheduling, graph algorithms, computational geometry, message communication, wire routing, etc.

Evolutionary Computation in Combinatorial Optimization

Evolutionary Computation in Combinatorial Optimization PDF Author: Peter Merz
Publisher: Springer
ISBN: 3642203647
Category : Computers
Languages : en
Pages : 274

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 11th European Conference on Evolutionary Computation in Combinatorial Optimization, EvoCOP 2011, held in Torino, Italy, in April 2011. The 22 revised full papers presented were carefully reviewed and selected from 42 submissions. The papers present the latest research and discuss current developments and applications in metaheuristics - a paradigm to effectively solve difficult combinatorial optimization problems appearing in various industrial, economical, and scientific domains. Prominent examples of metaheuristics are evolutionary algorithms, simulated annealing, tabu search, scatter search, memetic algorithms, variable neighborhood search, iterated local search, greedy randomized adaptive search procedures, estimation of distribution algorithms, and ant colony optimization.

Evolutionary Computation in Combinatorial Optimization

Evolutionary Computation in Combinatorial Optimization PDF Author: Arnaud Liefooghe
Publisher: Springer
ISBN: 3030167119
Category : Computers
Languages : en
Pages : 231

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 19th European Conference on Evolutionary Computation in Combinatorial Optimization, EvoCOP 2019, held as part of Evo* 2019, in Leipzig, Germany, in April 2019, co-located with the Evo* 2019 events EuroGP, EvoMUSART and EvoApplications. The 14 revised full papers presented were carefully reviewed and selected from 37 submissions. The papers cover a wide spectrum of topics, ranging from the foundations of evolutionary computation algorithms and other search heuristics to their accurate design and application to both single- and multi-objective combinatorial optimization problems. Fundamental and methodological aspects deal with runtime analysis, the structural properties of fitness landscapes, the study of metaheuristics core components, the clever design of their search principles, and their careful selection and configuration. Applications cover domains such as scheduling, routing, partitioning and general graph problems.