Stochastic Control for Economic Models

Stochastic Control for Economic Models PDF Author: David A. Kendrick
Publisher: McGraw-Hill Companies
ISBN:
Category : Business & Economics
Languages : en
Pages : 264

Get Book Here

Book Description

Stochastic Control for Economic Models

Stochastic Control for Economic Models PDF Author: David A. Kendrick
Publisher: McGraw-Hill Companies
ISBN:
Category : Business & Economics
Languages : en
Pages : 264

Get Book Here

Book Description


Continuous-time Stochastic Control and Optimization with Financial Applications

Continuous-time Stochastic Control and Optimization with Financial Applications PDF Author: Huyên Pham
Publisher: Springer Science & Business Media
ISBN: 3540895000
Category : Mathematics
Languages : en
Pages : 243

Get Book Here

Book Description
Stochastic optimization problems arise in decision-making problems under uncertainty, and find various applications in economics and finance. On the other hand, problems in finance have recently led to new developments in the theory of stochastic control. This volume provides a systematic treatment of stochastic optimization problems applied to finance by presenting the different existing methods: dynamic programming, viscosity solutions, backward stochastic differential equations, and martingale duality methods. The theory is discussed in the context of recent developments in this field, with complete and detailed proofs, and is illustrated by means of concrete examples from the world of finance: portfolio allocation, option hedging, real options, optimal investment, etc. This book is directed towards graduate students and researchers in mathematical finance, and will also benefit applied mathematicians interested in financial applications and practitioners wishing to know more about the use of stochastic optimization methods in finance.

Stochastic Control Theory

Stochastic Control Theory PDF Author: Makiko Nisio
Publisher: Springer
ISBN: 4431551239
Category : Mathematics
Languages : en
Pages : 263

Get Book Here

Book Description
This book offers a systematic introduction to the optimal stochastic control theory via the dynamic programming principle, which is a powerful tool to analyze control problems. First we consider completely observable control problems with finite horizons. Using a time discretization we construct a nonlinear semigroup related to the dynamic programming principle (DPP), whose generator provides the Hamilton–Jacobi–Bellman (HJB) equation, and we characterize the value function via the nonlinear semigroup, besides the viscosity solution theory. When we control not only the dynamics of a system but also the terminal time of its evolution, control-stopping problems arise. This problem is treated in the same frameworks, via the nonlinear semigroup. Its results are applicable to the American option price problem. Zero-sum two-player time-homogeneous stochastic differential games and viscosity solutions of the Isaacs equations arising from such games are studied via a nonlinear semigroup related to DPP (the min-max principle, to be precise). Using semi-discretization arguments, we construct the nonlinear semigroups whose generators provide lower and upper Isaacs equations. Concerning partially observable control problems, we refer to stochastic parabolic equations driven by colored Wiener noises, in particular, the Zakai equation. The existence and uniqueness of solutions and regularities as well as Itô's formula are stated. A control problem for the Zakai equations has a nonlinear semigroup whose generator provides the HJB equation on a Banach space. The value function turns out to be a unique viscosity solution for the HJB equation under mild conditions. This edition provides a more generalized treatment of the topic than does the earlier book Lectures on Stochastic Control Theory (ISI Lecture Notes 9), where time-homogeneous cases are dealt with. Here, for finite time-horizon control problems, DPP was formulated as a one-parameter nonlinear semigroup, whose generator provides the HJB equation, by using a time-discretization method. The semigroup corresponds to the value function and is characterized as the envelope of Markovian transition semigroups of responses for constant control processes. Besides finite time-horizon controls, the book discusses control-stopping problems in the same frameworks.

The Economics of Inaction

The Economics of Inaction PDF Author: Nancy L. Stokey
Publisher: Princeton University Press
ISBN: 0691135053
Category : Business & Economics
Languages : en
Pages : 321

Get Book Here

Book Description
In The Economics of Inaction, leading economist Nancy Stokey shows how the tools of stochastic control can be applied to dynamic problems of decision making under uncertainty when fixed costs are present. Stokey provides a self-contained, rigorous, and clear treatment of two types of models, impulse and instantaneous control. She presents the relevant results about Brownian motion and other diffusion processes, develops methods for analyzing each type of problem, and discusses applications to price setting, investment, and durable goods purchases."--Pub. desc.

Modeling, Stochastic Control, Optimization, and Applications

Modeling, Stochastic Control, Optimization, and Applications PDF Author: George Yin
Publisher: Springer
ISBN: 3030254984
Category : Mathematics
Languages : en
Pages : 593

Get Book Here

Book Description
This volume collects papers, based on invited talks given at the IMA workshop in Modeling, Stochastic Control, Optimization, and Related Applications, held at the Institute for Mathematics and Its Applications, University of Minnesota, during May and June, 2018. There were four week-long workshops during the conference. They are (1) stochastic control, computation methods, and applications, (2) queueing theory and networked systems, (3) ecological and biological applications, and (4) finance and economics applications. For broader impacts, researchers from different fields covering both theoretically oriented and application intensive areas were invited to participate in the conference. It brought together researchers from multi-disciplinary communities in applied mathematics, applied probability, engineering, biology, ecology, and networked science, to review, and substantially update most recent progress. As an archive, this volume presents some of the highlights of the workshops, and collect papers covering a broad range of topics.

Stochastic Optimal Control in Infinite Dimension

Stochastic Optimal Control in Infinite Dimension PDF Author: Giorgio Fabbri
Publisher: Springer
ISBN: 3319530674
Category : Mathematics
Languages : en
Pages : 928

Get Book Here

Book Description
Providing an introduction to stochastic optimal control in infinite dimension, this book gives a complete account of the theory of second-order HJB equations in infinite-dimensional Hilbert spaces, focusing on its applicability to associated stochastic optimal control problems. It features a general introduction to optimal stochastic control, including basic results (e.g. the dynamic programming principle) with proofs, and provides examples of applications. A complete and up-to-date exposition of the existing theory of viscosity solutions and regular solutions of second-order HJB equations in Hilbert spaces is given, together with an extensive survey of other methods, with a full bibliography. In particular, Chapter 6, written by M. Fuhrman and G. Tessitore, surveys the theory of regular solutions of HJB equations arising in infinite-dimensional stochastic control, via BSDEs. The book is of interest to both pure and applied researchers working in the control theory of stochastic PDEs, and in PDEs in infinite dimension. Readers from other fields who want to learn the basic theory will also find it useful. The prerequisites are: standard functional analysis, the theory of semigroups of operators and its use in the study of PDEs, some knowledge of the dynamic programming approach to stochastic optimal control problems in finite dimension, and the basics of stochastic analysis and stochastic equations in infinite-dimensional spaces.

Stochastic Optimal Control and the U.S. Financial Debt Crisis

Stochastic Optimal Control and the U.S. Financial Debt Crisis PDF Author: Jerome L. Stein
Publisher: Springer Science & Business Media
ISBN: 1461430798
Category : Business & Economics
Languages : en
Pages : 167

Get Book Here

Book Description
Stochastic Optimal Control (SOC)—a mathematical theory concerned with minimizing a cost (or maximizing a payout) pertaining to a controlled dynamic process under uncertainty—has proven incredibly helpful to understanding and predicting debt crises and evaluating proposed financial regulation and risk management. Stochastic Optimal Control and the U.S. Financial Debt Crisis analyzes SOC in relation to the 2008 U.S. financial crisis, and offers a detailed framework depicting why such a methodology is best suited for reducing financial risk and addressing key regulatory issues. Topics discussed include the inadequacies of the current approaches underlying financial regulations, the use of SOC to explain debt crises and superiority over existing approaches to regulation, and the domestic and international applications of SOC to financial crises. Principles in this book will appeal to economists, mathematicians, and researchers interested in the U.S. financial debt crisis and optimal risk management.

Deterministic and Stochastic Optimal Control

Deterministic and Stochastic Optimal Control PDF Author: Wendell H. Fleming
Publisher: Springer Science & Business Media
ISBN: 1461263808
Category : Mathematics
Languages : en
Pages : 231

Get Book Here

Book Description
This book may be regarded as consisting of two parts. In Chapters I-IV we pre sent what we regard as essential topics in an introduction to deterministic optimal control theory. This material has been used by the authors for one semester graduate-level courses at Brown University and the University of Kentucky. The simplest problem in calculus of variations is taken as the point of departure, in Chapter I. Chapters II, III, and IV deal with necessary conditions for an opti mum, existence and regularity theorems for optimal controls, and the method of dynamic programming. The beginning reader may find it useful first to learn the main results, corollaries, and examples. These tend to be found in the earlier parts of each chapter. We have deliberately postponed some difficult technical proofs to later parts of these chapters. In the second part of the book we give an introduction to stochastic optimal control for Markov diffusion processes. Our treatment follows the dynamic pro gramming method, and depends on the intimate relationship between second order partial differential equations of parabolic type and stochastic differential equations. This relationship is reviewed in Chapter V, which may be read inde pendently of Chapters I-IV. Chapter VI is based to a considerable extent on the authors' work in stochastic control since 1961. It also includes two other topics important for applications, namely, the solution to the stochastic linear regulator and the separation principle.

Numerical Methods for Stochastic Control Problems in Continuous Time

Numerical Methods for Stochastic Control Problems in Continuous Time PDF Author: Harold Kushner
Publisher: Springer Science & Business Media
ISBN: 146130007X
Category : Mathematics
Languages : en
Pages : 480

Get Book Here

Book Description
Stochastic control is a very active area of research. This monograph, written by two leading authorities in the field, has been updated to reflect the latest developments. It covers effective numerical methods for stochastic control problems in continuous time on two levels, that of practice and that of mathematical development. It is broadly accessible for graduate students and researchers.

Introduction to Stochastic Control Theory

Introduction to Stochastic Control Theory PDF Author: Karl J. Åström
Publisher: Courier Corporation
ISBN: 0486445313
Category : Technology & Engineering
Languages : en
Pages : 322

Get Book Here

Book Description
Unabridged republication of the edition published by Academic Press, 1970.