Stochastic and Robust Optimal Operation of Energy-efficient Building with Combined Heat and Power Systems

Stochastic and Robust Optimal Operation of Energy-efficient Building with Combined Heat and Power Systems PDF Author: Ping Liu
Publisher:
ISBN:
Category :
Languages : en
Pages : 147

Get Book Here

Book Description
Energy efficiency and renewable energy become more attractive in smart grid. In order to efficiently reduce global energy usage in building energy systems and to improve local environmental sustainability, it is essential to optimize the operation and the performance of combined heat and power (CHP) systems. In addition, intermittent renewable energy and imprecisely predicted customer loads have introduced great challenges in energy-efficient buildings' optimal operation. In the deterministic optimal operation, we study the modeling of components in building energy systems, including the power grid interface, CHP and boiler units, energy storage devices, and appliances. The mixed energy resources are applied to collaboratively supply both electric and thermal loads. The results show that CHP can effectively improve overall energy efficiency by coordinating electric and thermal power supplies. Through the optimal operation of all power sources, the daily operation cost of building energy system for generating energy can be significantly reduced. In order to address the risk due to energy consumption and renewable energy production volatility, we conduct studies on both stochastic programming and robust optimizations to operate energy-efficient building systems under uncertainty. The multistage stochastic programming model is introduced so that the reliable operation of building energy systems would be probabilistically guaranteed with stochastic decisions. The simulation results show that the stochastic operation of building systems is a promising strategy to account for the impact of uncertainties on power dispatch decisions of energy-efficient buildings. In order to provide absolute guarantee for the reliable operation of building energy systems, a robust energy supply to electric and thermal loads is studied by exploring the influence of energy storage on energy supply and accounting for uncertainties in the energy-efficient building. The robustness can be adjusted to control the conservativeness of the proposed robust operation model. For the purpose of achieving adaptability in the robust optimal operation and attaining robustness in the stochastic optimal operation of building energy systems, we also develop an innovative robust stochastic optimization (RSO) model. The proposed RSO model not only overcomes the conservativeness in the robust operation model, but also circumvents the curse of dimensionality in the stochastic operation model.

Stochastic and Robust Optimal Operation of Energy-efficient Building with Combined Heat and Power Systems

Stochastic and Robust Optimal Operation of Energy-efficient Building with Combined Heat and Power Systems PDF Author: Ping Liu
Publisher:
ISBN:
Category :
Languages : en
Pages : 147

Get Book Here

Book Description
Energy efficiency and renewable energy become more attractive in smart grid. In order to efficiently reduce global energy usage in building energy systems and to improve local environmental sustainability, it is essential to optimize the operation and the performance of combined heat and power (CHP) systems. In addition, intermittent renewable energy and imprecisely predicted customer loads have introduced great challenges in energy-efficient buildings' optimal operation. In the deterministic optimal operation, we study the modeling of components in building energy systems, including the power grid interface, CHP and boiler units, energy storage devices, and appliances. The mixed energy resources are applied to collaboratively supply both electric and thermal loads. The results show that CHP can effectively improve overall energy efficiency by coordinating electric and thermal power supplies. Through the optimal operation of all power sources, the daily operation cost of building energy system for generating energy can be significantly reduced. In order to address the risk due to energy consumption and renewable energy production volatility, we conduct studies on both stochastic programming and robust optimizations to operate energy-efficient building systems under uncertainty. The multistage stochastic programming model is introduced so that the reliable operation of building energy systems would be probabilistically guaranteed with stochastic decisions. The simulation results show that the stochastic operation of building systems is a promising strategy to account for the impact of uncertainties on power dispatch decisions of energy-efficient buildings. In order to provide absolute guarantee for the reliable operation of building energy systems, a robust energy supply to electric and thermal loads is studied by exploring the influence of energy storage on energy supply and accounting for uncertainties in the energy-efficient building. The robustness can be adjusted to control the conservativeness of the proposed robust operation model. For the purpose of achieving adaptability in the robust optimal operation and attaining robustness in the stochastic optimal operation of building energy systems, we also develop an innovative robust stochastic optimization (RSO) model. The proposed RSO model not only overcomes the conservativeness in the robust operation model, but also circumvents the curse of dimensionality in the stochastic operation model.

Optimal Operation of Integrated Multi-Energy Systems Under Uncertainty

Optimal Operation of Integrated Multi-Energy Systems Under Uncertainty PDF Author: Qiuwei Wu
Publisher: Elsevier
ISBN: 0128241144
Category : Technology & Engineering
Languages : en
Pages : 370

Get Book Here

Book Description
Optimal Operation of Integrated Multi-Energy Systems Under Uncertainty discusses core concepts, advanced modeling and key operation strategies for integrated multi-energy systems geared for use in optimal operation. The book particularly focuses on reviewing novel operating strategies supported by relevant code in MATLAB and GAMS. It covers foundational concepts, key challenges and opportunities in operational implementation, followed by discussions of conventional approaches to modeling electricity, heat and gas networks. This modeling is the base for more detailed operation strategies for optimal operation of integrated multi-energy systems under uncertainty covered in the latter part of the work. Reviews advanced modeling approaches relevant to the integration of electricity, heat and gas systems in operation studies Covers stochastic and robust optimal operation of integrated multi-energy systems Evaluates MPC based, real-time dispatch of integrated multi-energy systems Considers uncertainty modeling for stochastic and robust optimization Assesses optimal operation and real-time dispatch for multi-energy building complexes

Robust Optimal Planning and Operation of Electrical Energy Systems

Robust Optimal Planning and Operation of Electrical Energy Systems PDF Author: Behnam Mohammadi-ivatloo
Publisher: Springer
ISBN: 3030042960
Category : Technology & Engineering
Languages : en
Pages : 315

Get Book Here

Book Description
This book discusses the recent developments in robust optimization (RO) and information gap design theory (IGDT) methods and their application for the optimal planning and operation of electric energy systems. Chapters cover both theoretical background and applications to address common uncertainty factors such as load variation, power market price, and power generation of renewable energy sources. Case studies with real-world applications are included to help undergraduate and graduate students, researchers and engineers solve robust power and energy optimization problems and provide effective and promising solutions for the robust planning and operation of electric energy systems.

Advances in Theoretical and Computational Energy Optimization Processes

Advances in Theoretical and Computational Energy Optimization Processes PDF Author: Ferdinando Salata
Publisher: MDPI
ISBN: 3039366386
Category : Technology & Engineering
Languages : en
Pages : 422

Get Book Here

Book Description
The paradigm in the design of all human activity that requires energy for its development must change from the past. We must change the processes of product manufacturing and functional services. This is necessary in order to mitigate the ecological footprint of man on the Earth, which cannot be considered as a resource with infinite capacities. To do this, every single process must be analyzed and modified, with the aim of decarbonising each production sector. This collection of articles has been assembled to provide ideas and new broad-spectrum contributions for these purposes.

Optimal Operation of Integrated Multi-Energy Systems Under Uncertainty

Optimal Operation of Integrated Multi-Energy Systems Under Uncertainty PDF Author: Qiuwei Wu
Publisher: Elsevier
ISBN: 0128241152
Category : Technology & Engineering
Languages : en
Pages : 372

Get Book Here

Book Description
Optimal Operation of Integrated Multi-Energy Systems Under Uncertainty discusses core concepts, advanced modeling and key operation strategies for integrated multi-energy systems geared for use in optimal operation. The book particularly focuses on reviewing novel operating strategies supported by relevant code in MATLAB and GAMS. It covers foundational concepts, key challenges and opportunities in operational implementation, followed by discussions of conventional approaches to modeling electricity, heat and gas networks. This modeling is the base for more detailed operation strategies for optimal operation of integrated multi-energy systems under uncertainty covered in the latter part of the work. Reviews advanced modeling approaches relevant to the integration of electricity, heat and gas systems in operation studies Covers stochastic and robust optimal operation of integrated multi-energy systems Evaluates MPC based, real-time dispatch of integrated multi-energy systems Considers uncertainty modeling for stochastic and robust optimization Assesses optimal operation and real-time dispatch for multi-energy building complexes

Advanced Technologies for Planning and Operation of Prosumer Energy Systems, volume III

Advanced Technologies for Planning and Operation of Prosumer Energy Systems, volume III PDF Author: Bin Zhou
Publisher: Frontiers Media SA
ISBN: 2832552463
Category : Technology & Engineering
Languages : en
Pages : 385

Get Book Here

Book Description
Prosumers, such as energy storage, smart home, and microgrids, are the consumers who also produce and share surplus energy with other users. With capabilities of flexibly managing the generation, storage and consumption of energy in a simultaneous manner, prosumers can help improve the operation efficiency of smart grid. Due to the rapid expansion of prosumer clusters, the planning and operation issues of prosumer energy systems have been increasingly raised. Aspects including energy infrastructure design, energy management, system stability, etc., are urgently required to be addressed while taking full advantage of prosumers' capabilities. However, up to date, the research on prosumers has not drawn sufficient attention. This proposal presents the need to introduce a Research Topic on prosumer energy systems in Frontiers in Energy Research. We believe this Research Topic can promote the research on advanced planning and operation technologies of prosumer energy systems and contribute to the carbon neutrality for a sustainable society.

Operation, Planning, and Analysis of Energy Storage Systems in Smart Energy Hubs

Operation, Planning, and Analysis of Energy Storage Systems in Smart Energy Hubs PDF Author: Behnam Mohammadi-Ivatloo
Publisher: Springer
ISBN: 3319750976
Category : Technology & Engineering
Languages : en
Pages : 452

Get Book Here

Book Description
This book discusses the design and scheduling of residential, industrial, and commercial energy hubs, and their integration into energy storage technologies and renewable energy sources. Each chapter provides theoretical background and application examples for specific power systems including, solar, wind, geothermal, air and hydro. Case-studies are included to provide engineers, researchers, and students with the most modern technical and intelligent approaches to solving power and energy integration problems with special attention given to the environmental and economic aspects of energy storage systems.

Optimisation Models and Methods in Energy Systems

Optimisation Models and Methods in Energy Systems PDF Author: Carlos Henggeler Antunes
Publisher: MDPI
ISBN: 3039211188
Category : Technology & Engineering
Languages : en
Pages : 194

Get Book Here

Book Description
This book is a printed edition of the Special Issue Optimisation Models and Methods in Energy Systems that was published in Energies

Handbook of Clean Energy Systems, 6 Volume Set

Handbook of Clean Energy Systems, 6 Volume Set PDF Author: Jinyue Yan
Publisher: John Wiley & Sons
ISBN: 1118388585
Category : Science
Languages : en
Pages : 4038

Get Book Here

Book Description
The Handbook of Clean Energy Systems brings together an international team of experts to present a comprehensive overview of the latest research, developments and practical applications throughout all areas of clean energy systems. Consolidating information which is currently scattered across a wide variety of literature sources, the handbook covers a broad range of topics in this interdisciplinary research field including both fossil and renewable energy systems. The development of intelligent energy systems for efficient energy processes and mitigation technologies for the reduction of environmental pollutants is explored in depth, and environmental, social and economic impacts are also addressed. Topics covered include: Volume 1 - Renewable Energy: Biomass resources and biofuel production; Bioenergy Utilization; Solar Energy; Wind Energy; Geothermal Energy; Tidal Energy. Volume 2 - Clean Energy Conversion Technologies: Steam/Vapor Power Generation; Gas Turbines Power Generation; Reciprocating Engines; Fuel Cells; Cogeneration and Polygeneration. Volume 3 - Mitigation Technologies: Carbon Capture; Negative Emissions System; Carbon Transportation; Carbon Storage; Emission Mitigation Technologies; Efficiency Improvements and Waste Management; Waste to Energy. Volume 4 - Intelligent Energy Systems: Future Electricity Markets; Diagnostic and Control of Energy Systems; New Electric Transmission Systems; Smart Grid and Modern Electrical Systems; Energy Efficiency of Municipal Energy Systems; Energy Efficiency of Industrial Energy Systems; Consumer Behaviors; Load Control and Management; Electric Car and Hybrid Car; Energy Efficiency Improvement. Volume 5 - Energy Storage: Thermal Energy Storage; Chemical Storage; Mechanical Storage; Electrochemical Storage; Integrated Storage Systems. Volume 6 - Sustainability of Energy Systems: Sustainability Indicators, Evaluation Criteria, and Reporting; Regulation and Policy; Finance and Investment; Emission Trading; Modeling and Analysis of Energy Systems; Energy vs. Development; Low Carbon Economy; Energy Efficiencies and Emission Reduction. Key features: Comprising over 3,500 pages in 6 volumes, HCES presents a comprehensive overview of the latest research, developments and practical applications throughout all areas of clean energy systems, consolidating a wealth of information which is currently scattered across a wide variety of literature sources. In addition to renewable energy systems, HCES also covers processes for the efficient and clean conversion of traditional fuels such as coal, oil and gas, energy storage systems, mitigation technologies for the reduction of environmental pollutants, and the development of intelligent energy systems. Environmental, social and economic impacts of energy systems are also addressed in depth. Published in full colour throughout. Fully indexed with cross referencing within and between all six volumes. Edited by leading researchers from academia and industry who are internationally renowned and active in their respective fields. Published in print and online. The online version is a single publication (i.e. no updates), available for one-time purchase or through annual subscription.

Stochastic Control of Energy Efficient Buildings

Stochastic Control of Energy Efficient Buildings PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The key goal in energy efficient buildings is to reduce energy consumption of Heating, Ventilation, and Air- Conditioning (HVAC) systems while maintaining a comfortable temperature and humidity in the building. This paper proposes a novel stochastic control approach for achieving joint performance and power control of HVAC. We employ a constrained Stochastic Linear Quadratic Control (cSLQC) by minimizing a quadratic cost function with a disturbance assumed to be Gaussian. The problem is formulated to minimize the expected cost subject to a linear constraint and a probabilistic constraint. By using cSLQC, the problem is reduced to a semidefinite optimization problem, where the optimal control can be computed efficiently by Semidefinite programming (SDP). Simulation results are provided to demonstrate the effectiveness and power efficiency by utilizing the proposed control approach.