Author: Kenneth K. W. Kwan
Publisher: Elsevier
ISBN: 0443160953
Category : Technology & Engineering
Languages : en
Pages : 304
Book Description
Stimuli-responsive Actuating Materials for Micro-Robotics examines the latest stimuli-responsive actuating materials with high potential for applications in micro-robotics. The material science, functionalities and performance, and synthesis of these materials are reviewed. Then the common enabling technologies for material and signal integration such as 3/4D printing and interface engineering, chemo-mechanics modelling of the materials are discussed. Finally there is a chapter that looks at the prospects of materials for micro-robotics including case studies for specific applications such as self-folding origami robots and robots for micro-surgery. Stimuli-Responsive Actuating Materials for Micro-Robotics is suitable for researchers and practitioners working in the subject areas of materials science and engineering. - Examines high-performance stimuli-responsive actuating materials for micro-robotics applications - Discusses common enabling technologies and micro-robotics device construction, with a focus on integration of materials - Reviews the application prospects of material-driven micro-robots in micro-surgery and compact engineering
Stimuli-responsive Actuating Materials for Micro-robotics
Author: Kenneth K. W. Kwan
Publisher: Elsevier
ISBN: 0443160953
Category : Technology & Engineering
Languages : en
Pages : 304
Book Description
Stimuli-responsive Actuating Materials for Micro-Robotics examines the latest stimuli-responsive actuating materials with high potential for applications in micro-robotics. The material science, functionalities and performance, and synthesis of these materials are reviewed. Then the common enabling technologies for material and signal integration such as 3/4D printing and interface engineering, chemo-mechanics modelling of the materials are discussed. Finally there is a chapter that looks at the prospects of materials for micro-robotics including case studies for specific applications such as self-folding origami robots and robots for micro-surgery. Stimuli-Responsive Actuating Materials for Micro-Robotics is suitable for researchers and practitioners working in the subject areas of materials science and engineering. - Examines high-performance stimuli-responsive actuating materials for micro-robotics applications - Discusses common enabling technologies and micro-robotics device construction, with a focus on integration of materials - Reviews the application prospects of material-driven micro-robots in micro-surgery and compact engineering
Publisher: Elsevier
ISBN: 0443160953
Category : Technology & Engineering
Languages : en
Pages : 304
Book Description
Stimuli-responsive Actuating Materials for Micro-Robotics examines the latest stimuli-responsive actuating materials with high potential for applications in micro-robotics. The material science, functionalities and performance, and synthesis of these materials are reviewed. Then the common enabling technologies for material and signal integration such as 3/4D printing and interface engineering, chemo-mechanics modelling of the materials are discussed. Finally there is a chapter that looks at the prospects of materials for micro-robotics including case studies for specific applications such as self-folding origami robots and robots for micro-surgery. Stimuli-Responsive Actuating Materials for Micro-Robotics is suitable for researchers and practitioners working in the subject areas of materials science and engineering. - Examines high-performance stimuli-responsive actuating materials for micro-robotics applications - Discusses common enabling technologies and micro-robotics device construction, with a focus on integration of materials - Reviews the application prospects of material-driven micro-robots in micro-surgery and compact engineering
Photoactive Functional Soft Materials
Author: Quan Li
Publisher: John Wiley & Sons
ISBN: 3527344829
Category : Technology & Engineering
Languages : en
Pages : 496
Book Description
This book covers the design, synthesis, properties, and applications of functional photoactive soft materials, including aspects of polymers, block copolymers, elastomers, biomaterials, liquid crystals, chemical and physical gels, colloids, and host-guest systems. It combines, in a unified manner, authoritative accounts describing various structural and functional aspects of photoactive soft materials. Photoactive Functional Soft Materials: Preparation, Properties, and Applications: * Brings together the state-of-the-art knowledge on photoactive functional soft materials in a unified manner * Covers a vibrant research field with tremendous application potential in areas such as optoelectronics, photonics, and energy generation * Appeals to a large interdisciplinary audience because it is highly useful for researchers and engineers working on photonics, optoelectronics, imaging and sensing, nanotechnology, and energy materials Photoactive Functional Soft Materials: Preparation, Properties and Applications focuses on the design and fabrication of photoactive functional soft materials for materials science, nanophotonics, nanotechnology, and biomedical applications.
Publisher: John Wiley & Sons
ISBN: 3527344829
Category : Technology & Engineering
Languages : en
Pages : 496
Book Description
This book covers the design, synthesis, properties, and applications of functional photoactive soft materials, including aspects of polymers, block copolymers, elastomers, biomaterials, liquid crystals, chemical and physical gels, colloids, and host-guest systems. It combines, in a unified manner, authoritative accounts describing various structural and functional aspects of photoactive soft materials. Photoactive Functional Soft Materials: Preparation, Properties, and Applications: * Brings together the state-of-the-art knowledge on photoactive functional soft materials in a unified manner * Covers a vibrant research field with tremendous application potential in areas such as optoelectronics, photonics, and energy generation * Appeals to a large interdisciplinary audience because it is highly useful for researchers and engineers working on photonics, optoelectronics, imaging and sensing, nanotechnology, and energy materials Photoactive Functional Soft Materials: Preparation, Properties and Applications focuses on the design and fabrication of photoactive functional soft materials for materials science, nanophotonics, nanotechnology, and biomedical applications.
Micro/Nanorobots in Nanobiotechnology
Author: Fengtong Ji
Publisher: Frontiers Media SA
ISBN: 2832551920
Category : Technology & Engineering
Languages : en
Pages : 126
Book Description
Micro/nanorobots have emerged as functional agents and versatile tools for investigating the complex microenvironments within biological systems. Operating at a scale comparable to cells, these micro/nanorobots offer controllable motion and customizable characteristics, whilst swarming micro/nanorobots exhibit exceptional efficiency, robustness, and adaptivity. As a result, these active particles hold significant potential for interacting with living cells, diseased tissues, and organs, offering viable approaches to uncovering natural principles of development and addressing diseases such as drug-tolerant infections and bacterial self-organization. To tackle these challenges, functionalized micro/nanorobots, through active intervention, can yield substantial effects on the development and treatment of cellular environments, bacterial biofilms, and tissue restoration. In this regard, we are organizing a special issue to delineate the current state of the art of micro/nanorobots in biological contexts and to advance therapeutics by elucidating the underlying mechanisms in living systems. In the contemporary era of advancing nanomedicine, the utilization of micro/nanorobots in clinical therapy is still in its nascent stages within the realm of modern healthcare. Biomedical and biological environments hold immense promise as platforms for these active agents, showcasing remarkable functionalities and efficacy in vitro, ex vivo, and in vivo. Micro/nanorobots have the capacity to emulate the behaviors of living cells, particularly bacteria, which play a crucial role in microbial infections, thus impacting public health and medical devices. These active agents possess the potential to overcome biological barriers and enable targeted therapies for various healthcare issues, including the prevention and treatment of diseased tissues and biofilms, which will significantly enhance the minimally invasive operations and remote treatments for the next-generation human healthcare system. The objectives of this research topic are threefold: (1) to investigate the novel functionalities of micro/nanorobots in biological contexts, (2) to unravel the underlying principles of cell, tissue, and organ development, and (3) to innovate active therapeutic approaches for addressing diseased tissues and microbial biofilms
Publisher: Frontiers Media SA
ISBN: 2832551920
Category : Technology & Engineering
Languages : en
Pages : 126
Book Description
Micro/nanorobots have emerged as functional agents and versatile tools for investigating the complex microenvironments within biological systems. Operating at a scale comparable to cells, these micro/nanorobots offer controllable motion and customizable characteristics, whilst swarming micro/nanorobots exhibit exceptional efficiency, robustness, and adaptivity. As a result, these active particles hold significant potential for interacting with living cells, diseased tissues, and organs, offering viable approaches to uncovering natural principles of development and addressing diseases such as drug-tolerant infections and bacterial self-organization. To tackle these challenges, functionalized micro/nanorobots, through active intervention, can yield substantial effects on the development and treatment of cellular environments, bacterial biofilms, and tissue restoration. In this regard, we are organizing a special issue to delineate the current state of the art of micro/nanorobots in biological contexts and to advance therapeutics by elucidating the underlying mechanisms in living systems. In the contemporary era of advancing nanomedicine, the utilization of micro/nanorobots in clinical therapy is still in its nascent stages within the realm of modern healthcare. Biomedical and biological environments hold immense promise as platforms for these active agents, showcasing remarkable functionalities and efficacy in vitro, ex vivo, and in vivo. Micro/nanorobots have the capacity to emulate the behaviors of living cells, particularly bacteria, which play a crucial role in microbial infections, thus impacting public health and medical devices. These active agents possess the potential to overcome biological barriers and enable targeted therapies for various healthcare issues, including the prevention and treatment of diseased tissues and biofilms, which will significantly enhance the minimally invasive operations and remote treatments for the next-generation human healthcare system. The objectives of this research topic are threefold: (1) to investigate the novel functionalities of micro/nanorobots in biological contexts, (2) to unravel the underlying principles of cell, tissue, and organ development, and (3) to innovate active therapeutic approaches for addressing diseased tissues and microbial biofilms
Mechanically Responsive Materials for Soft Robotics
Author: Hideko Koshima
Publisher: John Wiley & Sons
ISBN: 3527346201
Category : Technology & Engineering
Languages : en
Pages : 442
Book Description
Offers a comprehensive review of the research and development of mechanically responsive materials and their applications in soft robots Mechanically Responsive Materials for Soft Robotics offers an authoritative guide to the current state of mechanically responsive materials for the development of soft robotics. With contributions from an international panel of experts, the book examines existing mechanically responsive materials such as crystals, polymers, gels, and composites that are stimulated by light and heat. The book also explores the application of mechanical materials to soft robotics. The authors describe the many excellent mechanical crystals developed in recent years that show the ability to bend, twist, rotate, jump, self-heal, and shape memory. Mechanical polymer materials are described for evolution into artificial muscles, photomobile materials, bioinspired soft actuators, inorganic-organic hybrid materials, multi-responsive composite materials, and strain sensor materials. The application of mechanical materials to soft robots is just the beginning. This book reviews the many challenging and versatile applications, such as soft microrobots made from photoresponsive elastomers, four-dimensional printing for assembling soft robots, self-growing of soft robots like plants, and biohybrid robots using muscle tissue. This important book: -Explores recent developments in the use of soft smart materials in robotic systems -Covers the full scope of mechanically responsive materials: polymers, crystals, gels, and nanocomposites -Deals with an interdisciplinary topic of advanced smart materials research -Contains extensive descriptions of current and future applications in soft robotics Written for materials scientists, polymer chemists, photochemists, physical chemists, solid state chemists, inorganic chemists, and robotics engineers, Mechanically Responsive Materials for Soft Robotics offers a comprehensive and timely review of the most recent research on mechanically responsive materials and the manufacture of soft robotics.
Publisher: John Wiley & Sons
ISBN: 3527346201
Category : Technology & Engineering
Languages : en
Pages : 442
Book Description
Offers a comprehensive review of the research and development of mechanically responsive materials and their applications in soft robots Mechanically Responsive Materials for Soft Robotics offers an authoritative guide to the current state of mechanically responsive materials for the development of soft robotics. With contributions from an international panel of experts, the book examines existing mechanically responsive materials such as crystals, polymers, gels, and composites that are stimulated by light and heat. The book also explores the application of mechanical materials to soft robotics. The authors describe the many excellent mechanical crystals developed in recent years that show the ability to bend, twist, rotate, jump, self-heal, and shape memory. Mechanical polymer materials are described for evolution into artificial muscles, photomobile materials, bioinspired soft actuators, inorganic-organic hybrid materials, multi-responsive composite materials, and strain sensor materials. The application of mechanical materials to soft robots is just the beginning. This book reviews the many challenging and versatile applications, such as soft microrobots made from photoresponsive elastomers, four-dimensional printing for assembling soft robots, self-growing of soft robots like plants, and biohybrid robots using muscle tissue. This important book: -Explores recent developments in the use of soft smart materials in robotic systems -Covers the full scope of mechanically responsive materials: polymers, crystals, gels, and nanocomposites -Deals with an interdisciplinary topic of advanced smart materials research -Contains extensive descriptions of current and future applications in soft robotics Written for materials scientists, polymer chemists, photochemists, physical chemists, solid state chemists, inorganic chemists, and robotics engineers, Mechanically Responsive Materials for Soft Robotics offers a comprehensive and timely review of the most recent research on mechanically responsive materials and the manufacture of soft robotics.
Untethered Miniature Soft Robots
Author: Li Zhang
Publisher: John Wiley & Sons
ISBN: 3527840907
Category : Technology & Engineering
Languages : en
Pages : 261
Book Description
Untethered Miniature Soft Robots Reference on achieving contactless manipulation of soft robots, detailing high level concepts and perspectives and technical skills of soft robots Untethered Miniature Soft Robots: Materials, Fabrications, and Applications introduces the emerging field of miniature soft robots and summarizes the recent rapid development in the field to date, describing different types of functional materials to build miniature soft robots, such as silicone elastomer, carbon-based materials, hydrogels, liquid crystal polymer, flexible ferrofluid, and liquid metal, and covering the material properties, fabrication strategies, and functionalities in soft robots together with their underlying mechanisms. The book discusses magnetically, thermally, optically, and chemically actuated soft robots in depth, explores the many specific applications of miniature soft robots in biomedical, environmental, and electrical fields and summarizes the development of miniature soft robots based on soft matter, fabrication strategies, locomotion principles, sensing and actuation mechanisms. In closing, the text summarizes the opportunities and challenges faced by miniature soft robots, providing expert insight into the possible futures of this field. Written by four highly qualified academics, Untethered Miniature Soft Robots covers sample topics such as: Soft elastomer-based robots with programmable magnetization profiles and untethered soft robots based on template-aiding Working mechanisms of carbon-based materials, covering light-induced expansion and shrinkage, and humidity-induced deformation Designing microscale building blocks, modular assembly of building blocks based on Denavit-Hartenberg (DH) matrix, and inverse and forward design of modular morphing systems Material designs of magnetic liquid crystal elastomers (LCE) systems, multiple-stimuli responsiveness of magnetic LCE systems, and adaptive locomotion of magnetic LCE-based robots Controllable deformation and motion behaviors, as well as applications of ferrofluids droplet robots (FDRs), including cargo capturing, object sorting, liquid pumping/mixing, and liquid skin. Providing highly detailed and up-to-date coverage of the topic, Untethered Miniature Soft Robots serves as an invaluable and highly comprehensive reference for researchers working in this promising field across a variety of disciplines, including materials scientists, mechanical and electronics engineers, polymer chemists, and biochemists.
Publisher: John Wiley & Sons
ISBN: 3527840907
Category : Technology & Engineering
Languages : en
Pages : 261
Book Description
Untethered Miniature Soft Robots Reference on achieving contactless manipulation of soft robots, detailing high level concepts and perspectives and technical skills of soft robots Untethered Miniature Soft Robots: Materials, Fabrications, and Applications introduces the emerging field of miniature soft robots and summarizes the recent rapid development in the field to date, describing different types of functional materials to build miniature soft robots, such as silicone elastomer, carbon-based materials, hydrogels, liquid crystal polymer, flexible ferrofluid, and liquid metal, and covering the material properties, fabrication strategies, and functionalities in soft robots together with their underlying mechanisms. The book discusses magnetically, thermally, optically, and chemically actuated soft robots in depth, explores the many specific applications of miniature soft robots in biomedical, environmental, and electrical fields and summarizes the development of miniature soft robots based on soft matter, fabrication strategies, locomotion principles, sensing and actuation mechanisms. In closing, the text summarizes the opportunities and challenges faced by miniature soft robots, providing expert insight into the possible futures of this field. Written by four highly qualified academics, Untethered Miniature Soft Robots covers sample topics such as: Soft elastomer-based robots with programmable magnetization profiles and untethered soft robots based on template-aiding Working mechanisms of carbon-based materials, covering light-induced expansion and shrinkage, and humidity-induced deformation Designing microscale building blocks, modular assembly of building blocks based on Denavit-Hartenberg (DH) matrix, and inverse and forward design of modular morphing systems Material designs of magnetic liquid crystal elastomers (LCE) systems, multiple-stimuli responsiveness of magnetic LCE systems, and adaptive locomotion of magnetic LCE-based robots Controllable deformation and motion behaviors, as well as applications of ferrofluids droplet robots (FDRs), including cargo capturing, object sorting, liquid pumping/mixing, and liquid skin. Providing highly detailed and up-to-date coverage of the topic, Untethered Miniature Soft Robots serves as an invaluable and highly comprehensive reference for researchers working in this promising field across a variety of disciplines, including materials scientists, mechanical and electronics engineers, polymer chemists, and biochemists.
Bioinspired Sensing, Actuation, and Control in Underwater Soft Robotic Systems
Author: Derek A. Paley
Publisher: Springer Nature
ISBN: 303050476X
Category : Technology & Engineering
Languages : en
Pages : 300
Book Description
This book includes representative research from the state‐of‐the‐art in the emerging field of soft robotics, with a special focus on bioinspired soft robotics for underwater applications. Topics include novel materials, sensors, actuators, and system design for distributed estimation and control of soft robotic appendages inspired by the octopus and seastar. It summarizes the latest findings in an emerging field of bioinspired soft robotics for the underwater domain, primarily drawing from (but not limited to) an ongoing research program in bioinspired autonomous systems sponsored by the Office of Naval Research. The program has stimulated cross‐disciplinary research in biology, material science, computational mechanics, and systems and control for the purpose of creating novel robotic appendages for maritime applications. The book collects recent results in this area.
Publisher: Springer Nature
ISBN: 303050476X
Category : Technology & Engineering
Languages : en
Pages : 300
Book Description
This book includes representative research from the state‐of‐the‐art in the emerging field of soft robotics, with a special focus on bioinspired soft robotics for underwater applications. Topics include novel materials, sensors, actuators, and system design for distributed estimation and control of soft robotic appendages inspired by the octopus and seastar. It summarizes the latest findings in an emerging field of bioinspired soft robotics for the underwater domain, primarily drawing from (but not limited to) an ongoing research program in bioinspired autonomous systems sponsored by the Office of Naval Research. The program has stimulated cross‐disciplinary research in biology, material science, computational mechanics, and systems and control for the purpose of creating novel robotic appendages for maritime applications. The book collects recent results in this area.
Biomimetic Principles and Design of Advanced Engineering Materials
Author: Zhenhai Xia
Publisher: John Wiley & Sons
ISBN: 1118533070
Category : Technology & Engineering
Languages : en
Pages : 317
Book Description
This book explores the structure-property-process relationship of biomaterials from engineering and biomedical perspectives, and the potential of bio-inspired materials and their applications. A large variety of natural materials with outstanding physical and mechanical properties have appeared in the course of evolution. From a bio-inspired viewpoint, materials design requires a novel and highly cross disciplinary approach. Considerable benefits can be gained by providing an integrated approach using bio-inspiration with materials science and engineering. The book is divided into three parts; Part One focuses on mechanical aspects, dealing with conventional material properties: strength, toughness, hardness, wear resistance, impact resistance, self-healing, adhesion, and adaptation and morphing. Part Two focuses on functional materials with unique capabilities, such as self-cleaning, stimuli-response, structural color, anti-reflective materials, catalytic materials for clean energy conversion and storage, and other related topics. Part Three describes how to mimic natural materials processes to synthesize materials with low cost, efficient and environmentally friendly approaches. For each chapter, the approach is to describe situations in nature first and then biomimetic materials, fulfilling the need for an interdisciplinary approach which overlaps both engineering and materials science.
Publisher: John Wiley & Sons
ISBN: 1118533070
Category : Technology & Engineering
Languages : en
Pages : 317
Book Description
This book explores the structure-property-process relationship of biomaterials from engineering and biomedical perspectives, and the potential of bio-inspired materials and their applications. A large variety of natural materials with outstanding physical and mechanical properties have appeared in the course of evolution. From a bio-inspired viewpoint, materials design requires a novel and highly cross disciplinary approach. Considerable benefits can be gained by providing an integrated approach using bio-inspiration with materials science and engineering. The book is divided into three parts; Part One focuses on mechanical aspects, dealing with conventional material properties: strength, toughness, hardness, wear resistance, impact resistance, self-healing, adhesion, and adaptation and morphing. Part Two focuses on functional materials with unique capabilities, such as self-cleaning, stimuli-response, structural color, anti-reflective materials, catalytic materials for clean energy conversion and storage, and other related topics. Part Three describes how to mimic natural materials processes to synthesize materials with low cost, efficient and environmentally friendly approaches. For each chapter, the approach is to describe situations in nature first and then biomimetic materials, fulfilling the need for an interdisciplinary approach which overlaps both engineering and materials science.
Electroactive Polymers for Robotic Applications
Author: Kwang J. Kim
Publisher: Springer Science & Business Media
ISBN: 1846283728
Category : Technology & Engineering
Languages : en
Pages : 288
Book Description
This book covers the fundamental properties, modeling, and demonstration of Electroactive polymers in robotic applications. It particularly details artificial muscles and sensors. In addition, the book discusses the properties and uses in robotics applications of ionic polymer–metal composite actuators and dielectric elastomers.
Publisher: Springer Science & Business Media
ISBN: 1846283728
Category : Technology & Engineering
Languages : en
Pages : 288
Book Description
This book covers the fundamental properties, modeling, and demonstration of Electroactive polymers in robotic applications. It particularly details artificial muscles and sensors. In addition, the book discusses the properties and uses in robotics applications of ionic polymer–metal composite actuators and dielectric elastomers.
Chemomechanical Instabilities in Responsive Materials
Author: Pierre Borckmans
Publisher: Springer Science & Business Media
ISBN: 9048129915
Category : Science
Languages : en
Pages : 282
Book Description
The present volume includes most of the material of the invited lectures delivered at the NATO Advanced Study Institute “Morphogenesis through the interplay of nonlinear chemical instabilities and elastic active media” held from 2th to 14th July 2007 at the Institut d’Etudes Scientifiques de Cargèse (http://www.iesc.univ-corse.fr/), in Corsica (France). This traditional place to organize Summer Schools and Workshops in a well equipped secluded location at the border of the Mediterranean sea has, over many years now, earned an increasing deserved reputation. Non-linear dynamics of non equilibrium systems has worked its way into a great number of fields and plays a key role in the understanding of se- organization and emergence phenomena in domains as diverse as chemical reactors, laser physics, fluid dynamics, electronic devices and biological morphogenesis. In the latter case, the viscoelastic properties of tissues are also known to play a key role. The control and formulation of soft responsive or “smart” materials has been a fast growing field of material science, specially in the area of po- mer networks, due to their growing applications in bio-science, chemical sensors, intelligent microfluidic devices, ... . Nature is an important p- vider of active materials whether at the level of tissues or at that of s- cellular structures. As a consequence, the fundamental understanding of the physical mechanisms at play in responsive materials also shines light in the understanding of biological artefacts.
Publisher: Springer Science & Business Media
ISBN: 9048129915
Category : Science
Languages : en
Pages : 282
Book Description
The present volume includes most of the material of the invited lectures delivered at the NATO Advanced Study Institute “Morphogenesis through the interplay of nonlinear chemical instabilities and elastic active media” held from 2th to 14th July 2007 at the Institut d’Etudes Scientifiques de Cargèse (http://www.iesc.univ-corse.fr/), in Corsica (France). This traditional place to organize Summer Schools and Workshops in a well equipped secluded location at the border of the Mediterranean sea has, over many years now, earned an increasing deserved reputation. Non-linear dynamics of non equilibrium systems has worked its way into a great number of fields and plays a key role in the understanding of se- organization and emergence phenomena in domains as diverse as chemical reactors, laser physics, fluid dynamics, electronic devices and biological morphogenesis. In the latter case, the viscoelastic properties of tissues are also known to play a key role. The control and formulation of soft responsive or “smart” materials has been a fast growing field of material science, specially in the area of po- mer networks, due to their growing applications in bio-science, chemical sensors, intelligent microfluidic devices, ... . Nature is an important p- vider of active materials whether at the level of tissues or at that of s- cellular structures. As a consequence, the fundamental understanding of the physical mechanisms at play in responsive materials also shines light in the understanding of biological artefacts.
Soft Robotics
Author:
Publisher: Academic Press
ISBN: 0128231823
Category : Technology & Engineering
Languages : en
Pages : 286
Book Description
Soft Robotics aims at providing state of art on research and potential approaches of soft robotics. It particularly challenges the traditional thinking of engineers, as the confluence of technologies, ranging from new materials, sensors, actuators and production techniques to new design tools, will make it possible to create new systems whose structures are almost completely made of soft materials, which bring about entirely new functions and behaviors, similar in many ways to natural systems. This is a huge research topic, "hot and with a huge potential due to new possibilities offered by these systems to cope with problems that cannot be addressed by robots built from rigid bodies. - Chemical engineering can take part to the emerging field of soft robotics - Soft and polymer materials can be used in sensing applications - Soft robotics can solve many industrial issues and challenges
Publisher: Academic Press
ISBN: 0128231823
Category : Technology & Engineering
Languages : en
Pages : 286
Book Description
Soft Robotics aims at providing state of art on research and potential approaches of soft robotics. It particularly challenges the traditional thinking of engineers, as the confluence of technologies, ranging from new materials, sensors, actuators and production techniques to new design tools, will make it possible to create new systems whose structures are almost completely made of soft materials, which bring about entirely new functions and behaviors, similar in many ways to natural systems. This is a huge research topic, "hot and with a huge potential due to new possibilities offered by these systems to cope with problems that cannot be addressed by robots built from rigid bodies. - Chemical engineering can take part to the emerging field of soft robotics - Soft and polymer materials can be used in sensing applications - Soft robotics can solve many industrial issues and challenges