Status of Advanced Tokamak Scenario Modeling with Off-Axis Electron Cyclotron Current Drive in DIII-D.

Status of Advanced Tokamak Scenario Modeling with Off-Axis Electron Cyclotron Current Drive in DIII-D. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The status of modeling work focused on developing the advanced tokamak scenarios in DIII-D is discussed. The objectives of the work are two-fold: (1) to develop AT scenarios with ECCD using time-dependent transport simulations, coupled with heating and current drive models, consistent with MHD equilibrium and stability; and (2) to use time-dependent simulations to help plan experiments and to understand the key physics involved. Time-dependent simulations based on transport coefficients derived from experimentally achieved target discharges are used to perform AT scenario modeling. The modeling indicates off-axis ECCD with approximately 3 MW absorbed power can maintain high-performance discharges with q[sub min]> 1 for 5 to 10 s. The resultant equilibria are calculated to be stable to n= 1 pressure driven modes. The plasma is well into the second stability regime for high-n ballooning modes over a large part of the plasma volume. The role of continuous localized ECCD is studied for stabilizing m/n= 2/1 tearing modes. The progress towards validating current drive and transport models, consistent with experimental results, and developing self-consistent, integrated high performance AT scenarios is discussed.

Status of Advanced Tokamak Scenario Modeling with Off-Axis Electron Cyclotron Current Drive in DIII-D.

Status of Advanced Tokamak Scenario Modeling with Off-Axis Electron Cyclotron Current Drive in DIII-D. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The status of modeling work focused on developing the advanced tokamak scenarios in DIII-D is discussed. The objectives of the work are two-fold: (1) to develop AT scenarios with ECCD using time-dependent transport simulations, coupled with heating and current drive models, consistent with MHD equilibrium and stability; and (2) to use time-dependent simulations to help plan experiments and to understand the key physics involved. Time-dependent simulations based on transport coefficients derived from experimentally achieved target discharges are used to perform AT scenario modeling. The modeling indicates off-axis ECCD with approximately 3 MW absorbed power can maintain high-performance discharges with q[sub min]> 1 for 5 to 10 s. The resultant equilibria are calculated to be stable to n= 1 pressure driven modes. The plasma is well into the second stability regime for high-n ballooning modes over a large part of the plasma volume. The role of continuous localized ECCD is studied for stabilizing m/n= 2/1 tearing modes. The progress towards validating current drive and transport models, consistent with experimental results, and developing self-consistent, integrated high performance AT scenarios is discussed.

Advanced Tokamak Scenario Modeling with Off-Axix ECH in DIII-D.

Advanced Tokamak Scenario Modeling with Off-Axix ECH in DIII-D. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 4

Get Book Here

Book Description
Time-dependent simulations with transport coefficients derived from experimentally achieved discharges are used to explore the capability of off-axis electron cyclotron current drive (ECCD) to control hollow current profiles in negative central shear discharges. Assuming these transport coefficients remain unchanged at higher EC power levels, the simulation results show that high confinement, high normalized beta and high bootstrap fraction can be achieved with EC power expected to be available in the near future in the DIII-D tokamak.

Electron Cyclotron Current Drive and Current Profile Control in the DIII-D Tokamak

Electron Cyclotron Current Drive and Current Profile Control in the DIII-D Tokamak PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Get Book Here

Book Description
Recent work in many tokamaks has indicated that optimization of the current profile is a key element needed to sustain modes of improved confinement and stability. Generation of localized current through application of electron cyclotron (EC) waves offers a means of accomplishing this. In addition to profile control, electron cyclotron current drive (ECCD) is useful for sustaining the bulk current in a steady state manner and for instability suppression. ECCD is particularly well suited for control of the current profile because the location of the driven current can be regulated by external means, through steering of the incident EC waves and setting the magnitude of the toroidal magnetic field. Under most conditions the location of the driven current is insensitive to the plasma parameters. Central ECCD has been studied in a number of tokamaks and found to have characteristics commensurate with theory as expressed through ray tracing and Fokker-Planck computer codes. The present experiments on DIII-D explore central current drive and are the first to test off-axis ECCD. These experiments are unique in using internal measurements of the magnetic field to determine the magnitude and profile of driven current.

Non-Inductive Current Drive Modeling Extending Advanced Tokamak Operation to Steady State

Non-Inductive Current Drive Modeling Extending Advanced Tokamak Operation to Steady State PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
A critical issue for sustaining high performance, negative central shear (NCS) discharges is the ability to maintain current distributions that are maximum off axis. Sustaining such hollow current profiles in steady state requires the use of non-inductively driven current sources. On the DIII-D experiment, a combination of neutral beam current drive (NBCD) and bootstrap current have been used to create transient NCS discharges. The electron cyclotron heating (ECH) and current drive (ECCD) system is currently being upgraded from three gyrotrons to six to provide more than 3MW of absorbed power in long-pulse operation to help sustain the required off-axis current drive. This upgrade SuPporrs the long range goal of DIII-D to sustain high performance discharges with high values of normalized [beta], [beta]{sub n} = [beta]/(I{sub p}/aB{sub T}), confinement enhancement factor, H, and neutron production rates while utilizing bootstrap current fraction, f{sub bs}, in excess of 50%. At these high performance levels, the likelihood of onset of MHD modes that spoil confinement indicates the need to control plasma profiles if we are to extend this operation to long pulse or steady state. To investigate the effectiveness of the EC system and to explore operating scenarios to sustain these discharges, we use time-dependent simulations of the equilibrium, transport and stability. We explore methods to directly alter the safety factor profile, q, through direct current drive or by localized electron heating to modify the bootstrap current profile. Time dependent simulations using both experimentally determined [1] and theory-based [2] energy transport models have been done. Here, we report on simulations exploring parametric dependencies of the heating, current drive, and profiles that affect our ability to sustain stable discharges.

Current Profile Modification with Electron Cyclotron Current Drive in the DIII-D Tokamak

Current Profile Modification with Electron Cyclotron Current Drive in the DIII-D Tokamak PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 8

Get Book Here

Book Description
Proof-of-principle experiments on the suitability of electron cyclotron current drive (ECCD) for active current profile control are reported. Experiments with second harmonic extraordinary mode absorption at power levels near 1 MW have demonstrated ability to modify the current profile. This modification is manifested in changes in the internal inductance and the time at which sawteeth appear. Measurements of the local current density and internal loop voltage using high resolution motional Stark effect spectroscopy to half of the minor radius in discharges with localized deposition clearly demonstrate localized off-axis ECCD at the predicted location. Comparison with theory indicates the detrimental effect of trapped electrons on the current drive efficiency is less than predicted. Modification of the theory for finite collisionality is the leading candidate to explain the observations.

ADVANCED TOKAMAK PROFILE EVOLUTION IN DIII-D.

ADVANCED TOKAMAK PROFILE EVOLUTION IN DIII-D. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Using off-axis electron cyclotron current drive (ECCD), self-consistent integrated advanced tokamak operation has been demonstrated on DIII-D, combining high[beta] (>3%) at high q(q[sub min]> 2.0) with good energy confinement (H[sub 89][approx] 2.5) and high noninductive current fraction (f[sub BS][approx] 55%, f[sub NI][approx] 90%). Modification of the current profile by ECCD led to internal transport barrier formation even in the presence of type I edge localized modes. Improvements were observed in all transport channels, and increased peaking of profiles led to higher bootstrap current in the core. Separate experiments have shown the ability to maintain a nearly steady-state current profile for up to 1 s with q[sub min]> 1.5. Modeling indicates that this favorable current profile can be maintained indefinitely at a higher[beta][sub N] using tools available to the near-term DIII-D program. Modeling and simulation have become essential tools for the experimental program in interpreting the data and developing detail plans for new experiments.

Nuclear Fusion

Nuclear Fusion PDF Author:
Publisher:
ISBN:
Category : Nuclear fusion
Languages : en
Pages : 332

Get Book Here

Book Description


Progress Toward Sustained High-Performance Advanced Tokamak Discharges in DIII-D.

Progress Toward Sustained High-Performance Advanced Tokamak Discharges in DIII-D. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 7

Get Book Here

Book Description
Key elements of a sustained advanced tokamak discharge in DIII-D are a large fraction of the total current from bootstrap current (f{sub BS}) and parameters that optimize the capability to use electron cyclotron current drive (ECCD) at [rho] ≈ 0.5 to maintain the desired current profile [1-4]. Increased f{sub BS} results from increasing both the normalized beta ([beta]{sub N}) and the minimum value of the safety factor (q{sub min}). Off-axis ECCD is, for the available gyrotron power, optimized at high [beta]{sub N}, high electron temperature (T{sub e}) and low electron density (n{sub e}). As previously reported [2-4], these required elements have been separately demonstrated: density control at high [beta]{sub N} with n{sub e} ≤ 5 x 1019 m−3 using divertor-region pumping, stability at high [beta], and off-axis ECCD at the theoretically predicted efficiency. This report summarizes recent work on optimizing and integrating these results through evaluation of the dependence of the beta limit on q{sub min} and q95, exploration of discharges with relatively high q{sub min}, testing of feedback control of T{sub e} for control of the q profile evolution, and modification of the current profile time evolution when ECCD is applied.

SELF-CONSISTENT, INTEGRATED, ADVANCED TOKAMAK OPERATION ON DIII-D.

SELF-CONSISTENT, INTEGRATED, ADVANCED TOKAMAK OPERATION ON DIII-D. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Recent experiments on DIII-D have demonstrated the ability to sustain plasma conditions that integrate and sustain the key ingredients of Advanced Tokamak (AT) operation: high[beta] with q[sub min]” 1, good energy confinement, and high current drive efficiency. Utilizing off-axis ([rho]= 0.4) electron cyclotron current drive (ECCD) to modify the current density profile in a plasma operating near the no-wall ideal stability limit with q[sub min]> 2.0, plasmas with[beta]= 2.9% and 90% of the plasma current driven non-inductively have been sustained for nearly 2 s (limited only by the duration of the ECCD pulse). Separate experiments have demonstrated the ability to sustain a steady current density profile using ECCD for periods as long as 1 s with[beta]= 3.3% and> 90% of the current driven non-inductively.

Overview of Recent Experimental Results from the DIII-D Advanced Tokamak Program

Overview of Recent Experimental Results from the DIII-D Advanced Tokamak Program PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 39

Get Book Here

Book Description
OAK A271 OVERVIEW OF RECENT EXPERIMENTAL RESULTS FROM THE DIII-D ADVANCED TOKAMAK PROGRAM. The DIII-D research program is developing the scientific basis for advanced tokamak (AT) modes of operation in order to enhance the attractiveness of the tokamak as an energy producing system. Since the last International Atomic Energy Agency (IAEA) meeting, they have made significant progress in developing the building blocks needed for AT operation: (1) they have doubled the magnetohydrodynamic (MHD) stable tokamak operating space through rotational stabilization of the resistive wall mode; (2) using this rotational stabilization, they have achieved [beta]{sub N}H9 e"10 for 4 [tau]{sub E} limited by the neoclassical tearing mode; (3) using real-time feedback of the electron cyclotron current drive (ECCD) location, they have stabilized the (m, n) = (3,2) neoclassical tearing mode and then increased [beta]{sub T} by 60%; (4) they have produced ECCD stabilization of the (2,1) neoclassical tearing mode in initial experiments; (5) they have made the first integrated AT demonstration discharges with current profile control using ECCD; (6) ECCD and electron cyclotron heating (ECH) have been used to control the pressure profile in high performance plasmas; and (7) they have demonstrated stationary tokamak operation for 6.5 s (36 [tau]{sub E}) at the same fusion gain parameter of [beta]{sub N}H9/q952 H"0.4 as ITER but at much higher q95 = 4.2. The authors have developed general improvements applicable to conventional and advanced tokamak operating modes: (1) they have an existence proof of a mode of tokamak operation, quiescent H-mode, which has no pulsed, ELM heat load to the divertor and which can run for long periods of time (3.8 s or 25 [tau]{sub E}) with constant density and constant radiated power; (2) they have demonstrated real-time disruption detection and mitigation for vertical disruption events using high pressure gas jet injection of noble gases; (3) they have found that the heat and particle fluxes to the inner strike points of balanced, double-null divertors are much smaller than to the outer strike points. They have made detailed investigations of the edge pedestal and SOL: (1) Atomic physics and plasma physics both play significant roles in setting the width of the edge density barrier in H-mode; (2) ELM heat flux conducted to the divertor decreases as density increases; (3) Intermittent, bursty transport contributes to cross field particle transport in the scrape-off layer (SOL) of H-mode and, especially, L-mode plasmas.