Statistics for Making Decisions

Statistics for Making Decisions PDF Author: Nicholas T. Longford
Publisher: CRC Press
ISBN: 1000347605
Category : Mathematics
Languages : en
Pages : 425

Get Book Here

Book Description
Making decisions is a ubiquitous mental activity in our private and professional or public lives. It entails choosing one course of action from an available shortlist of options. Statistics for Making Decisions places decision making at the centre of statistical inference, proposing its theory as a new paradigm for statistical practice. The analysis in this paradigm is earnest about prior information and the consequences of the various kinds of errors that may be committed. Its conclusion is a course of action tailored to the perspective of the specific client or sponsor of the analysis. The author’s intention is a wholesale replacement of hypothesis testing, indicting it with the argument that it has no means of incorporating the consequences of errors which self-evidently matter to the client. The volume appeals to the analyst who deals with the simplest statistical problems of comparing two samples (which one has a greater mean or variance), or deciding whether a parameter is positive or negative. It combines highlighting the deficiencies of hypothesis testing with promoting a principled solution based on the idea of a currency for error, of which we want to spend as little as possible. This is implemented by selecting the option for which the expected loss is smallest (the Bayes rule). The price to pay is the need for a more detailed description of the options, and eliciting and quantifying the consequences (ramifications) of the errors. This is what our clients do informally and often inexpertly after receiving outputs of the analysis in an established format, such as the verdict of a hypothesis test or an estimate and its standard error. As a scientific discipline and profession, statistics has a potential to do this much better and deliver to the client a more complete and more relevant product. Nicholas T. Longford is a senior statistician at Imperial College, London, specialising in statistical methods for neonatal medicine. His interests include causal analysis of observational studies, decision theory, and the contest of modelling and design in data analysis. His longer-term appointments in the past include Educational Testing Service, Princeton, NJ, USA, de Montfort University, Leicester, England, and directorship of SNTL, a statistics research and consulting company. He is the author of over 100 journal articles and six other monographs on a variety of topics in applied statistics.

Statistics for Making Decisions

Statistics for Making Decisions PDF Author: Nicholas T. Longford
Publisher: CRC Press
ISBN: 1000347605
Category : Mathematics
Languages : en
Pages : 425

Get Book Here

Book Description
Making decisions is a ubiquitous mental activity in our private and professional or public lives. It entails choosing one course of action from an available shortlist of options. Statistics for Making Decisions places decision making at the centre of statistical inference, proposing its theory as a new paradigm for statistical practice. The analysis in this paradigm is earnest about prior information and the consequences of the various kinds of errors that may be committed. Its conclusion is a course of action tailored to the perspective of the specific client or sponsor of the analysis. The author’s intention is a wholesale replacement of hypothesis testing, indicting it with the argument that it has no means of incorporating the consequences of errors which self-evidently matter to the client. The volume appeals to the analyst who deals with the simplest statistical problems of comparing two samples (which one has a greater mean or variance), or deciding whether a parameter is positive or negative. It combines highlighting the deficiencies of hypothesis testing with promoting a principled solution based on the idea of a currency for error, of which we want to spend as little as possible. This is implemented by selecting the option for which the expected loss is smallest (the Bayes rule). The price to pay is the need for a more detailed description of the options, and eliciting and quantifying the consequences (ramifications) of the errors. This is what our clients do informally and often inexpertly after receiving outputs of the analysis in an established format, such as the verdict of a hypothesis test or an estimate and its standard error. As a scientific discipline and profession, statistics has a potential to do this much better and deliver to the client a more complete and more relevant product. Nicholas T. Longford is a senior statistician at Imperial College, London, specialising in statistical methods for neonatal medicine. His interests include causal analysis of observational studies, decision theory, and the contest of modelling and design in data analysis. His longer-term appointments in the past include Educational Testing Service, Princeton, NJ, USA, de Montfort University, Leicester, England, and directorship of SNTL, a statistics research and consulting company. He is the author of over 100 journal articles and six other monographs on a variety of topics in applied statistics.

Translating Statistics to Make Decisions

Translating Statistics to Make Decisions PDF Author: Victoria Cox
Publisher: Apress
ISBN: 1484222563
Category : Business & Economics
Languages : en
Pages : 334

Get Book Here

Book Description
Examine and solve the common misconceptions and fallacies that non-statisticians bring to their interpretation of statistical results. Explore the many pitfalls that non-statisticians—and also statisticians who present statistical reports to non-statisticians—must avoid if statistical results are to be correctly used for evidence-based business decision making. Victoria Cox, senior statistician at the United Kingdom’s Defence Science and Technology Laboratory (Dstl), distills the lessons of her long experience presenting the actionable results of complex statistical studies to users of widely varying statistical sophistication across many disciplines: from scientists, engineers, analysts, and information technologists to executives, military personnel, project managers, and officials across UK government departments, industry, academia, and international partners. The author shows how faulty statistical reasoning often undermines the utility of statistical results even among those with advanced technical training. Translating Statistics teaches statistically naive readers enough about statistical questions, methods, models, assumptions, and statements that they will be able to extract the practical message from statistical reports and better constrain what conclusions cannot be made from the results. To non-statisticians with some statistical training, this book offers brush-ups, reminders, and tips for the proper use of statistics and solutions to common errors. To fellow statisticians, the author demonstrates how to present statistical output to non-statisticians to ensure that the statistical results are correctly understood and properly applied to real-world tasks and decisions. The book avoids algebra and proofs, but it does supply code written in R for those readers who are motivated to work out examples. Pointing along the way to instructive examples of statistics gone awry, Translating Statistics walks readers through the typical course of a statistical study, progressing from the experimental design stage through the data collection process, exploratory data analysis, descriptive statistics, uncertainty, hypothesis testing, statistical modelling and multivariate methods, to graphs suitable for final presentation. The steady focus throughout the book is on how to turn the mathematical artefacts and specialist jargon that are second nature to statisticians into plain English for corporate customers and stakeholders. The final chapter neatly summarizes the book’s lessons and insights for accurately communicating statistical reports to the non-statisticians who commission and act on them. What You'll Learn Recognize and avoid common errors and misconceptions that cause statistical studies to be misinterpreted and misused by non-statisticians in organizational settings Gain a practical understanding of the methods, processes, capabilities, and caveats of statistical studies to improve the application of statistical data to business decisions See how to code statistical solutions in R Who This Book Is For Non-statisticians—including both those with and without an introductory statistics course under their belts—who consume statistical reports in organizational settings, and statisticians who seek guidance for reporting statistical studies to non-statisticians in ways that will be accurately understood and will inform sound business and technical decisions

Using Statistics to Make Educational Decisions

Using Statistics to Make Educational Decisions PDF Author: David Tanner
Publisher: SAGE
ISBN: 1412969778
Category : Education
Languages : en
Pages : 553

Get Book Here

Book Description
Government scrutiny and intensified oversight have dramatically changed the landscape of education in recent years. Observers want to know how schools compare, which district is best, which states are spending the most per student on education, whether reforms are making a difference, and why so many students are failing. Some of these questions require technical answers that educators historically redirected to outside experts, but the questions leveled at all educators have become so acute and persistent that they can no longer be outsourced. This text helps educators develop the tools and the conceptual understanding needed to provide definitive answers to difficult statistical questions facing education today.

The Pleasures of Probability

The Pleasures of Probability PDF Author: Richard Isaac
Publisher: Springer Science & Business Media
ISBN: 146120819X
Category : Mathematics
Languages : en
Pages : 249

Get Book Here

Book Description
The ideas of probability are all around us. Lotteries, casino gambling, the al most non-stop polling which seems to mold public policy more and more these are a few of the areas where principles of probability impinge in a direct way on the lives and fortunes of the general public. At a more re moved level there is modern science which uses probability and its offshoots like statistics and the theory of random processes to build mathematical descriptions of the real world. In fact, twentieth-century physics, in embrac ing quantum mechanics, has a world view that is at its core probabilistic in nature, contrary to the deterministic one of classical physics. In addition to all this muscular evidence of the importance of probability ideas it should also be said that probability can be lots of fun. It is a subject where you can start thinking about amusing, interesting, and often difficult problems with very little mathematical background. In this book, I wanted to introduce a reader with at least a fairly decent mathematical background in elementary algebra to this world of probabil ity, to the way of thinking typical of probability, and the kinds of problems to which probability can be applied. I have used examples from a wide variety of fields to motivate the discussion of concepts.

Data Science for Business and Decision Making

Data Science for Business and Decision Making PDF Author: Luiz Paulo Favero
Publisher: Academic Press
ISBN: 0128112174
Category : Business & Economics
Languages : en
Pages : 1246

Get Book Here

Book Description
Data Science for Business and Decision Making covers both statistics and operations research while most competing textbooks focus on one or the other. As a result, the book more clearly defines the principles of business analytics for those who want to apply quantitative methods in their work. Its emphasis reflects the importance of regression, optimization and simulation for practitioners of business analytics. Each chapter uses a didactic format that is followed by exercises and answers. Freely-accessible datasets enable students and professionals to work with Excel, Stata Statistical Software®, and IBM SPSS Statistics Software®. - Combines statistics and operations research modeling to teach the principles of business analytics - Written for students who want to apply statistics, optimization and multivariate modeling to gain competitive advantages in business - Shows how powerful software packages, such as SPSS and Stata, can create graphical and numerical outputs

Risk Savvy

Risk Savvy PDF Author: Gerd Gigerenzer
Publisher: Penguin
ISBN: 0143127101
Category : Psychology
Languages : en
Pages : 338

Get Book Here

Book Description
A new eye-opener on how we can make better decisions—by the author of Gut Feelings In this age of big data we often trust that expert analysis—whether it’s about next year’s stock market or a person’s risk of getting cancer—is accurate. But, as risk expert Gerd Gigerenzer reveals in his latest book, Risk Savvy, most of us, including doctors, lawyers, and financial advisors, often misunderstand statistics, leaving us misinformed and vulnerable to exploitation. Yet there’s hope. In Risk Savvy, Gigerenzer gives us an essential guide to the science of good decision making, showing how ordinary people can make better decisions for their money, their health, and their families. Here, Gigerenzer delivers the surprising conclusion that the best results often come from considering less information and listening to your gut.

Learning Statistics with R

Learning Statistics with R PDF Author: Daniel Navarro
Publisher: Lulu.com
ISBN: 1326189727
Category : Computers
Languages : en
Pages : 617

Get Book Here

Book Description
"Learning Statistics with R" covers the contents of an introductory statistics class, as typically taught to undergraduate psychology students, focusing on the use of the R statistical software and adopting a light, conversational style throughout. The book discusses how to get started in R, and gives an introduction to data manipulation and writing scripts. From a statistical perspective, the book discusses descriptive statistics and graphing first, followed by chapters on probability theory, sampling and estimation, and null hypothesis testing. After introducing the theory, the book covers the analysis of contingency tables, t-tests, ANOVAs and regression. Bayesian statistics are covered at the end of the book. For more information (and the opportunity to check the book out before you buy!) visit http://ua.edu.au/ccs/teaching/lsr or http://learningstatisticswithr.com

Business Statistics for Contemporary Decision Making

Business Statistics for Contemporary Decision Making PDF Author: Ignacio Castillo
Publisher: John Wiley & Sons
ISBN: 1119983223
Category :
Languages : en
Pages : 850

Get Book Here

Book Description
Show students why business statistics is an increasingly important business skill through a student-friendly pedagogy. In this fourth Canadian edition of Business Statistics For Contemporary Decision Making authors Ken Black, Tiffany Bayley, and Ignacio Castillo uses current real-world data to equip students with the business analytics techniques and quantitative decision-making skills required to make smart decisions in today's workplace.

Basic Statistics with R

Basic Statistics with R PDF Author: Stephen C. Loftus
Publisher: Academic Press
ISBN: 0128209267
Category : Mathematics
Languages : en
Pages : 306

Get Book Here

Book Description
Basic Statistics with R: Reaching Decisions with Data provides an understanding of the processes at work in using data for results. Sections cover data collection and discuss exploratory analyses, including visual graphs, numerical summaries, and relationships between variables - basic probability, and statistical inference - including hypothesis testing and confidence intervals. All topics are taught using real-data drawn from various fields, including economics, biology, political science and sports. Using this wide variety of motivating examples allows students to directly connect and make statistics essential to their field of interest, rather than seeing it as a separate and ancillary knowledge area. In addition to introducing students to statistical topics using real data, the book provides a gentle introduction to coding, having the students use the statistical language and software R. Students learn to load data, calculate summary statistics, create graphs and do statistical inference using R with either Windows or Macintosh machines. - Features real-data to give students an engaging practice to connect with their areas of interest - Evolves from basic problems that can be worked by hand to the elementary use of opensource R software - Offers a direct, clear approach highlighted by useful visuals and examples

Applied Business Statistics

Applied Business Statistics PDF Author: Ken Black
Publisher:
ISBN: 9780470894132
Category :
Languages : en
Pages :

Get Book Here

Book Description