Author: Robert Miller
Publisher: Springer
ISBN: 1940033527
Category : Science
Languages : en
Pages : 63
Book Description
The objects of the American Meteorological Society are "the development and dissemination of knowledge of meteorology in all its phases and applications, and the advancement of its professional ideals." The organization of the Society took place in affiliation with the American Association for the Advancement of Science at Saint Louis, Missouri, December 29, 1919, and its incorporation, at Washington, D. C., January 21, 1920. The work of the Society is carried on by the Bulletin, the Journal, and Meteorological Monographs, by papers and discussions at meetings of the Society, through the offices of the Secretary and the Executive Secretary, and by correspondence. All of the Americas are represented in the membership of the Society as well as many foreign countries.
Statistical Prediction by Discriminant Analysis
Author: Robert Miller
Publisher: Springer
ISBN: 1940033527
Category : Science
Languages : en
Pages : 63
Book Description
The objects of the American Meteorological Society are "the development and dissemination of knowledge of meteorology in all its phases and applications, and the advancement of its professional ideals." The organization of the Society took place in affiliation with the American Association for the Advancement of Science at Saint Louis, Missouri, December 29, 1919, and its incorporation, at Washington, D. C., January 21, 1920. The work of the Society is carried on by the Bulletin, the Journal, and Meteorological Monographs, by papers and discussions at meetings of the Society, through the offices of the Secretary and the Executive Secretary, and by correspondence. All of the Americas are represented in the membership of the Society as well as many foreign countries.
Publisher: Springer
ISBN: 1940033527
Category : Science
Languages : en
Pages : 63
Book Description
The objects of the American Meteorological Society are "the development and dissemination of knowledge of meteorology in all its phases and applications, and the advancement of its professional ideals." The organization of the Society took place in affiliation with the American Association for the Advancement of Science at Saint Louis, Missouri, December 29, 1919, and its incorporation, at Washington, D. C., January 21, 1920. The work of the Society is carried on by the Bulletin, the Journal, and Meteorological Monographs, by papers and discussions at meetings of the Society, through the offices of the Secretary and the Executive Secretary, and by correspondence. All of the Americas are represented in the membership of the Society as well as many foreign countries.
Applied MANOVA and Discriminant Analysis
Author: Carl J. Huberty
Publisher: John Wiley & Sons
ISBN: 0471789461
Category : Mathematics
Languages : en
Pages : 524
Book Description
A complete introduction to discriminant analysis--extensively revised, expanded, and updated This Second Edition of the classic book, Applied Discriminant Analysis, reflects and references current usage with its new title, Applied MANOVA and Discriminant Analysis. Thoroughly updated and revised, this book continues to be essential for any researcher or student needing to learn to speak, read, and write about discriminant analysis as well as develop a philosophy of empirical research and data analysis. Its thorough introduction to the application of discriminant analysis is unparalleled. Offering the most up-to-date computer applications, references, terms, and real-life research examples, the Second Edition also includes new discussions of MANOVA, descriptive discriminant analysis, and predictive discriminant analysis. Newer SAS macros are included, and graphical software with data sets and programs are provided on the book's related Web site. The book features: Detailed discussions of multivariate analysis of variance and covariance An increased number of chapter exercises along with selected answers Analyses of data obtained via a repeated measures design A new chapter on analyses related to predictive discriminant analysis Basic SPSS(r) and SAS(r) computer syntax and output integrated throughout the book Applied MANOVA and Discriminant Analysis enables the reader to become aware of various types of research questions using MANOVA and discriminant analysis; to learn the meaning of this field's concepts and terms; and to be able to design a study that uses discriminant analysis through topics such as one-factor MANOVA/DDA, assessing and describing MANOVA effects, and deleting and ordering variables.
Publisher: John Wiley & Sons
ISBN: 0471789461
Category : Mathematics
Languages : en
Pages : 524
Book Description
A complete introduction to discriminant analysis--extensively revised, expanded, and updated This Second Edition of the classic book, Applied Discriminant Analysis, reflects and references current usage with its new title, Applied MANOVA and Discriminant Analysis. Thoroughly updated and revised, this book continues to be essential for any researcher or student needing to learn to speak, read, and write about discriminant analysis as well as develop a philosophy of empirical research and data analysis. Its thorough introduction to the application of discriminant analysis is unparalleled. Offering the most up-to-date computer applications, references, terms, and real-life research examples, the Second Edition also includes new discussions of MANOVA, descriptive discriminant analysis, and predictive discriminant analysis. Newer SAS macros are included, and graphical software with data sets and programs are provided on the book's related Web site. The book features: Detailed discussions of multivariate analysis of variance and covariance An increased number of chapter exercises along with selected answers Analyses of data obtained via a repeated measures design A new chapter on analyses related to predictive discriminant analysis Basic SPSS(r) and SAS(r) computer syntax and output integrated throughout the book Applied MANOVA and Discriminant Analysis enables the reader to become aware of various types of research questions using MANOVA and discriminant analysis; to learn the meaning of this field's concepts and terms; and to be able to design a study that uses discriminant analysis through topics such as one-factor MANOVA/DDA, assessing and describing MANOVA effects, and deleting and ordering variables.
An Introduction to Applied Multivariate Analysis with R
Author: Brian Everitt
Publisher: Springer Science & Business Media
ISBN: 1441996508
Category : Mathematics
Languages : en
Pages : 284
Book Description
The majority of data sets collected by researchers in all disciplines are multivariate, meaning that several measurements, observations, or recordings are taken on each of the units in the data set. These units might be human subjects, archaeological artifacts, countries, or a vast variety of other things. In a few cases, it may be sensible to isolate each variable and study it separately, but in most instances all the variables need to be examined simultaneously in order to fully grasp the structure and key features of the data. For this purpose, one or another method of multivariate analysis might be helpful, and it is with such methods that this book is largely concerned. Multivariate analysis includes methods both for describing and exploring such data and for making formal inferences about them. The aim of all the techniques is, in general sense, to display or extract the signal in the data in the presence of noise and to find out what the data show us in the midst of their apparent chaos. An Introduction to Applied Multivariate Analysis with R explores the correct application of these methods so as to extract as much information as possible from the data at hand, particularly as some type of graphical representation, via the R software. Throughout the book, the authors give many examples of R code used to apply the multivariate techniques to multivariate data.
Publisher: Springer Science & Business Media
ISBN: 1441996508
Category : Mathematics
Languages : en
Pages : 284
Book Description
The majority of data sets collected by researchers in all disciplines are multivariate, meaning that several measurements, observations, or recordings are taken on each of the units in the data set. These units might be human subjects, archaeological artifacts, countries, or a vast variety of other things. In a few cases, it may be sensible to isolate each variable and study it separately, but in most instances all the variables need to be examined simultaneously in order to fully grasp the structure and key features of the data. For this purpose, one or another method of multivariate analysis might be helpful, and it is with such methods that this book is largely concerned. Multivariate analysis includes methods both for describing and exploring such data and for making formal inferences about them. The aim of all the techniques is, in general sense, to display or extract the signal in the data in the presence of noise and to find out what the data show us in the midst of their apparent chaos. An Introduction to Applied Multivariate Analysis with R explores the correct application of these methods so as to extract as much information as possible from the data at hand, particularly as some type of graphical representation, via the R software. Throughout the book, the authors give many examples of R code used to apply the multivariate techniques to multivariate data.
Applied Discriminant Analysis
Author: Carl J. Huberty
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 504
Book Description
Most books on discriminant analysis focus on statistical theory. But properly applied, discriminant analysis methods can be enormously useful in the interpretation of data. This book is the first ever to offer a complete introduction to discriminant analysis that focuses on applications. It provides numerous examples, explained in great detail, using current statistical discriminant analysis algorithms. It also develops several themes that will be useful to researchers and students regardless of the analytical methods they employ. They are the careful examination of data prior to final analysis; the application of critical judgment and common sense to all analyses and interpretations; and conducting multiple analyses as a matter of routine. To encourage and enable readers to conduct multiple analyses of their data, the accompanying diskette contains the four complete data sets and five special computer programs that are referred to repeatedly in the text and are the subjects of numerous exercise problems. This enables the reader to carry out package analyses on the data sets using a variety of procedural options both within and across computer packages. The term "discriminant analysis" means different things to different people. For statisticians and researchers in the physical sciences, it usually denotes the process through which group membership is predicted on the basis of multiple predictor variables. Behavioral scientists, on the other hand, often use discriminant analysis to describe group differences across multiple response variables. Though closely related, predictive discriminant analysis (PDA) and descriptive discriminant analysis (DDA) are used for different purposes and should be approached in different ways. To accentuate these differences and distinguish clearly between the two, Applied Discriminant Analysis presents these topics separately. For graduate students, this book will expand your background in multivariate data analysis methods and facilitate both the reading and the conducting of applied empirical research. It will also be of great use to experienced researchers who wish to enhance or update their quantitative background, and to methodologists who want to learn more about the details of applied discriminant data analysis, and some still unresolved problems, as well.
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 504
Book Description
Most books on discriminant analysis focus on statistical theory. But properly applied, discriminant analysis methods can be enormously useful in the interpretation of data. This book is the first ever to offer a complete introduction to discriminant analysis that focuses on applications. It provides numerous examples, explained in great detail, using current statistical discriminant analysis algorithms. It also develops several themes that will be useful to researchers and students regardless of the analytical methods they employ. They are the careful examination of data prior to final analysis; the application of critical judgment and common sense to all analyses and interpretations; and conducting multiple analyses as a matter of routine. To encourage and enable readers to conduct multiple analyses of their data, the accompanying diskette contains the four complete data sets and five special computer programs that are referred to repeatedly in the text and are the subjects of numerous exercise problems. This enables the reader to carry out package analyses on the data sets using a variety of procedural options both within and across computer packages. The term "discriminant analysis" means different things to different people. For statisticians and researchers in the physical sciences, it usually denotes the process through which group membership is predicted on the basis of multiple predictor variables. Behavioral scientists, on the other hand, often use discriminant analysis to describe group differences across multiple response variables. Though closely related, predictive discriminant analysis (PDA) and descriptive discriminant analysis (DDA) are used for different purposes and should be approached in different ways. To accentuate these differences and distinguish clearly between the two, Applied Discriminant Analysis presents these topics separately. For graduate students, this book will expand your background in multivariate data analysis methods and facilitate both the reading and the conducting of applied empirical research. It will also be of great use to experienced researchers who wish to enhance or update their quantitative background, and to methodologists who want to learn more about the details of applied discriminant data analysis, and some still unresolved problems, as well.
Discriminant Analysis and Applications
Author: T. Cacoullos
Publisher: Academic Press
ISBN: 1483268713
Category : Mathematics
Languages : en
Pages : 455
Book Description
Discriminant Analysis and Applications comprises the proceedings of the NATO Advanced Study Institute on Discriminant Analysis and Applications held in Kifissia, Athens, Greece in June 1972. The book presents the theory and applications of Discriminant analysis, one of the most important areas of multivariate statistical analysis. This volume contains chapters that cover the historical development of discriminant analysis methods; logistic and quasi-linear discrimination; and distance functions. Medical and biological applications, and computer graphical analysis and graphical techniques for multidimensional data are likewise discussed. Statisticians, mathematicians, and biomathematicians will find the book very interesting.
Publisher: Academic Press
ISBN: 1483268713
Category : Mathematics
Languages : en
Pages : 455
Book Description
Discriminant Analysis and Applications comprises the proceedings of the NATO Advanced Study Institute on Discriminant Analysis and Applications held in Kifissia, Athens, Greece in June 1972. The book presents the theory and applications of Discriminant analysis, one of the most important areas of multivariate statistical analysis. This volume contains chapters that cover the historical development of discriminant analysis methods; logistic and quasi-linear discrimination; and distance functions. Medical and biological applications, and computer graphical analysis and graphical techniques for multidimensional data are likewise discussed. Statisticians, mathematicians, and biomathematicians will find the book very interesting.
Discriminant Analysis and Clustering
Author: Ram Gnanadesikan
Publisher: National Academies Press
ISBN:
Category : Mathematics
Languages : en
Pages : 116
Book Description
Publisher: National Academies Press
ISBN:
Category : Mathematics
Languages : en
Pages : 116
Book Description
Modern Statistics with R
Author: Måns Thulin
Publisher:
ISBN: 9781032497457
Category : Mathematics
Languages : en
Pages : 0
Book Description
The past decades have transformed the world of statistical data analysis, with new methods, new types of data, and new computational tools. Modern Statistics with R introduces you to key parts of this modern statistical toolkit. It teaches you: Data wrangling - importing, formatting, reshaping, merging, and filtering data in R. Exploratory data analysis - using visualisations and multivariate techniques to explore datasets. Statistical inference - modern methods for testing hypotheses and computing confidence intervals. Predictive modelling - regression models and machine learning methods for prediction, classification, and forecasting. Simulation - using simulation techniques for sample size computations and evaluations of statistical methods. Ethics in statistics - ethical issues and good statistical practice. R programming - writing code that is fast, readable, and (hopefully!) free from bugs. No prior programming experience is necessary. Clear explanations and examples are provided to accommodate readers at all levels of familiarity with statistical principles and coding practices. A basic understanding of probability theory can enhance comprehension of certain concepts discussed within this book. In addition to plenty of examples, the book includes more than 200 exercises, with fully worked solutions available at: www.modernstatisticswithr.com.
Publisher:
ISBN: 9781032497457
Category : Mathematics
Languages : en
Pages : 0
Book Description
The past decades have transformed the world of statistical data analysis, with new methods, new types of data, and new computational tools. Modern Statistics with R introduces you to key parts of this modern statistical toolkit. It teaches you: Data wrangling - importing, formatting, reshaping, merging, and filtering data in R. Exploratory data analysis - using visualisations and multivariate techniques to explore datasets. Statistical inference - modern methods for testing hypotheses and computing confidence intervals. Predictive modelling - regression models and machine learning methods for prediction, classification, and forecasting. Simulation - using simulation techniques for sample size computations and evaluations of statistical methods. Ethics in statistics - ethical issues and good statistical practice. R programming - writing code that is fast, readable, and (hopefully!) free from bugs. No prior programming experience is necessary. Clear explanations and examples are provided to accommodate readers at all levels of familiarity with statistical principles and coding practices. A basic understanding of probability theory can enhance comprehension of certain concepts discussed within this book. In addition to plenty of examples, the book includes more than 200 exercises, with fully worked solutions available at: www.modernstatisticswithr.com.
Modern Multivariate Statistical Techniques
Author: Alan J. Izenman
Publisher: Springer Science & Business Media
ISBN: 0387781897
Category : Mathematics
Languages : en
Pages : 757
Book Description
This is the first book on multivariate analysis to look at large data sets which describes the state of the art in analyzing such data. Material such as database management systems is included that has never appeared in statistics books before.
Publisher: Springer Science & Business Media
ISBN: 0387781897
Category : Mathematics
Languages : en
Pages : 757
Book Description
This is the first book on multivariate analysis to look at large data sets which describes the state of the art in analyzing such data. Material such as database management systems is included that has never appeared in statistics books before.
Your Statistical Consultant
Author: Rae R. Newton
Publisher: SAGE
ISBN: 1412997593
Category : Education
Languages : en
Pages : 385
Book Description
How do you bridge the gap between what you learned in your statistics course and the questions you want to answer in your real-world research? Oriented towards distinct questions in a "How do I?" or "When should I?" format, Your Statistical Consultant is the equivalent of the expert colleague down the hall who fields questions about describing, explaining, and making recommendations regarding thorny or confusing statistical issues. The book serves as a compendium of statistical knowledge, both theoretical and applied, that addresses the questions most frequently asked by students, researchers and instructors. Written to be responsive to a wide range of inquiries and levels of expertise, the book is flexibly organized so readers can either read it sequentially or turn directly to the sections that correspond to their concerns.
Publisher: SAGE
ISBN: 1412997593
Category : Education
Languages : en
Pages : 385
Book Description
How do you bridge the gap between what you learned in your statistics course and the questions you want to answer in your real-world research? Oriented towards distinct questions in a "How do I?" or "When should I?" format, Your Statistical Consultant is the equivalent of the expert colleague down the hall who fields questions about describing, explaining, and making recommendations regarding thorny or confusing statistical issues. The book serves as a compendium of statistical knowledge, both theoretical and applied, that addresses the questions most frequently asked by students, researchers and instructors. Written to be responsive to a wide range of inquiries and levels of expertise, the book is flexibly organized so readers can either read it sequentially or turn directly to the sections that correspond to their concerns.
An Introduction to Statistical Learning
Author: Gareth James
Publisher: Springer Nature
ISBN: 3031387473
Category : Mathematics
Languages : en
Pages : 617
Book Description
An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.
Publisher: Springer Nature
ISBN: 3031387473
Category : Mathematics
Languages : en
Pages : 617
Book Description
An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.