Statistical Models in S

Statistical Models in S PDF Author: T.J. Hastie
Publisher: Routledge
ISBN: 1351414224
Category : Mathematics
Languages : en
Pages : 542

Get Book Here

Book Description
Statistical Models in S extends the S language to fit and analyze a variety of statistical models, including analysis of variance, generalized linear models, additive models, local regression, and tree-based models. The contributions of the ten authors-most of whom work in the statistics research department at AT&T Bell Laboratories-represent results of research in both the computational and statistical aspects of modeling data.

Statistical Models in S

Statistical Models in S PDF Author: T.J. Hastie
Publisher: Routledge
ISBN: 1351414224
Category : Mathematics
Languages : en
Pages : 542

Get Book Here

Book Description
Statistical Models in S extends the S language to fit and analyze a variety of statistical models, including analysis of variance, generalized linear models, additive models, local regression, and tree-based models. The contributions of the ten authors-most of whom work in the statistics research department at AT&T Bell Laboratories-represent results of research in both the computational and statistical aspects of modeling data.

Linear Statistical Models

Linear Statistical Models PDF Author: James H. Stapleton
Publisher: John Wiley & Sons
ISBN: 0470231467
Category : Mathematics
Languages : en
Pages : 517

Get Book Here

Book Description
Praise for the First Edition "This impressive and eminently readable text . . . [is] a welcome addition to the statistical literature." —The Indian Journal of Statistics Revised to reflect the current developments on the topic, Linear Statistical Models, Second Edition provides an up-to-date approach to various statistical model concepts. The book includes clear discussions that illustrate key concepts in an accessible and interesting format while incorporating the most modern software applications. This Second Edition follows an introduction-theorem-proof-examples format that allows for easier comprehension of how to use the methods and recognize the associated assumptions and limits. In addition to discussions on the methods of random vectors, multiple regression techniques, simultaneous confidence intervals, and analysis of frequency data, new topics such as mixed models and curve fitting of models have been added to thoroughly update and modernize the book. Additional topical coverage includes: An introduction to R and S-Plus® with many examples Multiple comparison procedures Estimation of quantiles for regression models An emphasis on vector spaces and the corresponding geometry Extensive graphical displays accompany the book's updated descriptions and examples, which can be simulated using R, S-Plus®, and SAS® code. Problems at the end of each chapter allow readers to test their understanding of the presented concepts, and additional data sets are available via the book's FTP site. Linear Statistical Models, Second Edition is an excellent book for courses on linear models at the upper-undergraduate and graduate levels. It also serves as a comprehensive reference for statisticians, engineers, and scientists who apply multiple regression or analysis of variance in their everyday work.

COMPSTAT

COMPSTAT PDF Author: Konstantin Momirovic
Publisher: Physica
ISBN: 9783790804751
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
Although no-one is, probably, too enthused about the idea, it is a fact that the development of most empirical sciences to a great extent depends on the development of data analysis methods and techniques, which, due to the necessity of application of computers for that purpose, actually means that it practically depends on the advancement and orientation of computer statistics. Every other year the International Association for Statistical Computing sponsors the organizition of meetings of individual s professiona77y involved in computational statistics. Since these meetings attract professionals from allover the world, they are a good sample for the estimation of trends in this area which some believe is a statistics proper while others claim it is computer science. It seems, though, that an increasing number of colleagues treat it as an independent scientific or at least technical discipline. This volume contains six invited papers, 41 contributed papers and, finally, two papers which are, formally, software descriptions, but it was agreed by the Program Committee that they should be included in a separate section entitled "Notes about new developments in statistical software", due to their special significance for current trends in computational statistics.

Statistical Models

Statistical Models PDF Author: David A. Freedman
Publisher: Cambridge University Press
ISBN: 1139477315
Category : Mathematics
Languages : en
Pages : 459

Get Book Here

Book Description
This lively and engaging book explains the things you have to know in order to read empirical papers in the social and health sciences, as well as the techniques you need to build statistical models of your own. The discussion in the book is organized around published studies, as are many of the exercises. Relevant journal articles are reprinted at the back of the book. Freedman makes a thorough appraisal of the statistical methods in these papers and in a variety of other examples. He illustrates the principles of modelling, and the pitfalls. The discussion shows you how to think about the critical issues - including the connection (or lack of it) between the statistical models and the real phenomena. The book is written for advanced undergraduates and beginning graduate students in statistics, as well as students and professionals in the social and health sciences.

Statistical Models and Causal Inference

Statistical Models and Causal Inference PDF Author: David A. Freedman
Publisher: Cambridge University Press
ISBN: 0521195004
Category : Mathematics
Languages : en
Pages : 416

Get Book Here

Book Description
David A. Freedman presents a definitive synthesis of his approach to statistical modeling and causal inference in the social sciences.

Statistical Models in Engineering

Statistical Models in Engineering PDF Author: Gerald J. Hahn
Publisher: Wiley-Interscience
ISBN: 9780471040651
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
A detailed treatment on the use of statistical models representing physical phenomena. Considers the relevance of the popular normal distribution models and the applicability of exponential distribution in reliability problems. Introduces and discusses the use of alternate models such as gamma, beta and Weibull distributions. Features expansive coverage of system performance and describes an exact method known as the transformation of variables. Deals with techniques on assessing the adequacy of a chosen model including both graphical and analytical procedures. Contains scores of illustrative examples, most of which have been adapted from actual problems.

A First Course in the Theory of Linear Statistical Models

A First Course in the Theory of Linear Statistical Models PDF Author: Janet Susan Milton
Publisher: McGraw-Hill Primis Custom Pub
ISBN: 9780072327083
Category : Mathematics
Languages : en
Pages : 350

Get Book Here

Book Description
This is a teaching text for the advanced statistics undergraduate or the beginning graduate student of statistics. It is assumed that the user of the text has had at least a full year course in applied or mathematical statistics. The text is intended for a one semester introductory course in the theory of linear statistical models.

Linear Models in Statistics

Linear Models in Statistics PDF Author: Alvin C. Rencher
Publisher: John Wiley & Sons
ISBN: 0470192607
Category : Mathematics
Languages : en
Pages : 690

Get Book Here

Book Description
The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.

Multilevel Statistical Models

Multilevel Statistical Models PDF Author: Harvey Goldstein
Publisher: Hodder Education
ISBN: 9780340595299
Category : Technology & Engineering
Languages : en
Pages : 178

Get Book Here

Book Description
The basic linear multilevel model and its estimation - Extensions to the basic multilevel model - The multivariate multilevel model - Nonlinear multilevel models - Models for repeated meadures data - Multilevel models for discrete response data - Multilevel cross classification - Multilevel event history models - Multilevel models with measurement errors - Software for multilevel modelling; missing data and multilevel structural equation models.

Nonlinear Statistical Models

Nonlinear Statistical Models PDF Author: A. Ronald Gallant
Publisher: John Wiley & Sons
ISBN:
Category : Mathematics
Languages : en
Pages : 632

Get Book Here

Book Description
Univariate nonlinear regression; Univariate nonlinear regression: special situations; A unified asymptotic theory of nonlinear models with regression structure; Univariate nonlinear regression: asymptotic theory; Multivariate nonlinear regression; Nonlinear simultaneus equations models; A unified asymptotic theory for dynamic nonlinear models.