Statistical Models in Epidemiology

Statistical Models in Epidemiology PDF Author: David Clayton
Publisher: Oxford University Press, USA
ISBN: 0199671184
Category : Mathematics
Languages : en
Pages : 376

Get Book Here

Book Description
This self-contained account of the statistical basis of epidemiology has been written for those with a basic training in biology. It is specifically intended for students enrolled for a masters degree in epidemiology, clinical epidemiology, or biostatistics.

Statistical Models in Epidemiology

Statistical Models in Epidemiology PDF Author: David Clayton
Publisher: Oxford University Press, USA
ISBN: 0199671184
Category : Mathematics
Languages : en
Pages : 376

Get Book Here

Book Description
This self-contained account of the statistical basis of epidemiology has been written for those with a basic training in biology. It is specifically intended for students enrolled for a masters degree in epidemiology, clinical epidemiology, or biostatistics.

Statistical Models in Epidemiology, the Environment, and Clinical Trials

Statistical Models in Epidemiology, the Environment, and Clinical Trials PDF Author: M.Elizabeth Halloran
Publisher: Springer Science & Business Media
ISBN: 9780387989242
Category : Medical
Languages : en
Pages : 300

Get Book Here

Book Description
This IMA Volume in Mathematics and its Applications STATISTICAL MODELS IN EPIDEMIOLOGY, THE ENVIRONMENT,AND CLINICAL TRIALS is a combined proceedings on "Design and Analysis of Clinical Trials" and "Statistics and Epidemiology: Environment and Health. " This volume is the third series based on the proceedings of a very successful 1997 IMA Summer Program on "Statistics in the Health Sciences. " I would like to thank the organizers: M. Elizabeth Halloran of Emory University (Biostatistics) and Donald A. Berry of Duke University (Insti tute of Statistics and Decision Sciences and Cancer Center Biostatistics) for their excellent work as organizers of the meeting and for editing the proceedings. I am grateful to Seymour Geisser of University of Minnesota (Statistics), Patricia Grambsch, University of Minnesota (Biostatistics); Joel Greenhouse, Carnegie Mellon University (Statistics); Nicholas Lange, Harvard Medical School (Brain Imaging Center, McLean Hospital); Barry Margolin, University of North Carolina-Chapel Hill (Biostatistics); Sandy Weisberg, University of Minnesota (Statistics); Scott Zeger, Johns Hop kins University (Biostatistics); and Marvin Zelen, Harvard School of Public Health (Biostatistics) for organizing the six weeks summer program. I also take this opportunity to thank the National Science Foundation (NSF) and the Army Research Office (ARO), whose financial support made the workshop possible. Willard Miller, Jr.

Applications of Regression Models in Epidemiology

Applications of Regression Models in Epidemiology PDF Author: Erick Suárez
Publisher: John Wiley & Sons
ISBN: 1119212480
Category : Mathematics
Languages : en
Pages : 276

Get Book Here

Book Description
A one-stop guide for public health students and practitioners learning the applications of classical regression models in epidemiology This book is written for public health professionals and students interested in applying regression models in the field of epidemiology. The academic material is usually covered in public health courses including (i) Applied Regression Analysis, (ii) Advanced Epidemiology, and (iii) Statistical Computing. The book is composed of 13 chapters, including an introduction chapter that covers basic concepts of statistics and probability. Among the topics covered are linear regression model, polynomial regression model, weighted least squares, methods for selecting the best regression equation, and generalized linear models and their applications to different epidemiological study designs. An example is provided in each chapter that applies the theoretical aspects presented in that chapter. In addition, exercises are included and the final chapter is devoted to the solutions of these academic exercises with answers in all of the major statistical software packages, including STATA, SAS, SPSS, and R. It is assumed that readers of this book have a basic course in biostatistics, epidemiology, and introductory calculus. The book will be of interest to anyone looking to understand the statistical fundamentals to support quantitative research in public health. In addition, this book: • Is based on the authors’ course notes from 20 years teaching regression modeling in public health courses • Provides exercises at the end of each chapter • Contains a solutions chapter with answers in STATA, SAS, SPSS, and R • Provides real-world public health applications of the theoretical aspects contained in the chapters Applications of Regression Models in Epidemiology is a reference for graduate students in public health and public health practitioners. ERICK SUÁREZ is a Professor of the Department of Biostatistics and Epidemiology at the University of Puerto Rico School of Public Health. He received a Ph.D. degree in Medical Statistics from the London School of Hygiene and Tropical Medicine. He has 29 years of experience teaching biostatistics. CYNTHIA M. PÉREZ is a Professor of the Department of Biostatistics and Epidemiology at the University of Puerto Rico School of Public Health. She received an M.S. degree in Statistics and a Ph.D. degree in Epidemiology from Purdue University. She has 22 years of experience teaching epidemiology and biostatistics. ROBERTO RIVERA is an Associate Professor at the College of Business at the University of Puerto Rico at Mayaguez. He received a Ph.D. degree in Statistics from the University of California in Santa Barbara. He has more than five years of experience teaching statistics courses at the undergraduate and graduate levels. MELISSA N. MARTÍNEZ is an Account Supervisor at Havas Media International. She holds an MPH in Biostatistics from the University of Puerto Rico and an MSBA from the National University in San Diego, California. For the past seven years, she has been performing analyses for the biomedical research and media advertising fields.

Epidemiology

Epidemiology PDF Author: Mark Woodward
Publisher: CRC Press
ISBN: 1482243202
Category : Mathematics
Languages : en
Pages : 844

Get Book Here

Book Description
Highly praised for its broad, practical coverage, the second edition of this popular text incorporated the major statistical models and issues relevant to epidemiological studies. Epidemiology: Study Design and Data Analysis, Third Edition continues to focus on the quantitative aspects of epidemiological research. Updated and expanded, this edition shows students how statistical principles and techniques can help solve epidemiological problems. New to the Third Edition New chapter on risk scores and clinical decision rules New chapter on computer-intensive methods, including the bootstrap, permutation tests, and missing value imputation New sections on binomial regression models, competing risk, information criteria, propensity scoring, and splines Many more exercises and examples using both Stata and SAS More than 60 new figures After introducing study design and reviewing all the standard methods, this self-contained book takes students through analytical methods for both general and specific epidemiological study designs, including cohort, case-control, and intervention studies. In addition to classical methods, it now covers modern methods that exploit the enormous power of contemporary computers. The book also addresses the problem of determining the appropriate size for a study, discusses statistical modeling in epidemiology, covers methods for comparing and summarizing the evidence from several studies, and explains how to use statistical models in risk forecasting and assessing new biomarkers. The author illustrates the techniques with numerous real-world examples and interprets results in a practical way. He also includes an extensive list of references for further reading along with exercises to reinforce understanding. Web Resource A wealth of supporting material can be downloaded from the book’s CRC Press web page, including: Real-life data sets used in the text SAS and Stata programs used for examples in the text SAS and Stata programs for special techniques covered Sample size spreadsheet

Statistical Methods for Global Health and Epidemiology

Statistical Methods for Global Health and Epidemiology PDF Author: Xinguang Chen
Publisher: Springer Nature
ISBN: 3030352609
Category : Medical
Languages : en
Pages : 420

Get Book Here

Book Description
This book examines statistical methods and models used in the fields of global health and epidemiology. It includes methods such as innovative probability sampling, data harmonization and encryption, and advanced descriptive, analytical and monitory methods. Program codes using R are included as well as real data examples. Contemporary global health and epidemiology involves a myriad of medical and health challenges, including inequality of treatment, the HIV/AIDS epidemic and its subsequent control, the flu, cancer, tobacco control, drug use, and environmental pollution. In addition to its vast scales and telescopic perspective; addressing global health concerns often involves examining resource-limited populations with large geographic, socioeconomic diversities. Therefore, advancing global health requires new epidemiological design, new data, and new methods for sampling, data processing, and statistical analysis. This book provides global health researchers with methods that will enable access to and utilization of existing data. Featuring contributions from both epidemiological and biostatistical scholars, this book is a practical resource for researchers, practitioners, and students in solving global health problems in research, education, training, and consultation.

Statistical Models

Statistical Models PDF Author: David A. Freedman
Publisher: Cambridge University Press
ISBN: 1139477315
Category : Mathematics
Languages : en
Pages : 459

Get Book Here

Book Description
This lively and engaging book explains the things you have to know in order to read empirical papers in the social and health sciences, as well as the techniques you need to build statistical models of your own. The discussion in the book is organized around published studies, as are many of the exercises. Relevant journal articles are reprinted at the back of the book. Freedman makes a thorough appraisal of the statistical methods in these papers and in a variety of other examples. He illustrates the principles of modelling, and the pitfalls. The discussion shows you how to think about the critical issues - including the connection (or lack of it) between the statistical models and the real phenomena. The book is written for advanced undergraduates and beginning graduate students in statistics, as well as students and professionals in the social and health sciences.

Statistical Methods in Spatial Epidemiology

Statistical Methods in Spatial Epidemiology PDF Author: Andrew B. Lawson
Publisher: John Wiley & Sons
ISBN: 1118723171
Category : Medical
Languages : en
Pages : 302

Get Book Here

Book Description
Spatial epidemiology is the description and analysis of the geographical distribution of disease. It is more important now than ever, with modern threats such as bio-terrorism making such analysis even more complex. This second edition of Statistical Methods in Spatial Epidemiology is updated and expanded to offer a complete coverage of the analysis and application of spatial statistical methods. The book is divided into two main sections: Part 1 introduces basic definitions and terminology, along with map construction and some basic models. This is expanded upon in Part II by applying this knowledge to the fundamental problems within spatial epidemiology, such as disease mapping, ecological analysis, disease clustering, bio-terrorism, space-time analysis, surveillance and infectious disease modelling. Provides a comprehensive overview of the main statistical methods used in spatial epidemiology. Updated to include a new emphasis on bio-terrorism and disease surveillance. Emphasizes the importance of space-time modelling and outlines the practical application of the method. Discusses the wide range of software available for analyzing spatial data, including WinBUGS, SaTScan and R, and features an accompanying website hosting related software. Contains numerous data sets, each representing a different approach to the analysis, and provides an insight into various modelling techniques. This text is primarily aimed at medical statisticians, researchers and practitioners from public health and epidemiology. It is also suitable for postgraduate students of statistics and epidemiology, as well professionals working in government agencies.

Statistical Models and Causal Inference

Statistical Models and Causal Inference PDF Author: David A. Freedman
Publisher: Cambridge University Press
ISBN: 0521195004
Category : Mathematics
Languages : en
Pages : 416

Get Book Here

Book Description
David A. Freedman presents a definitive synthesis of his approach to statistical modeling and causal inference in the social sciences.

Mathematical and Statistical Estimation Approaches in Epidemiology

Mathematical and Statistical Estimation Approaches in Epidemiology PDF Author: Gerardo Chowell
Publisher: Springer Science & Business Media
ISBN: 9048123135
Category : Mathematics
Languages : en
Pages : 367

Get Book Here

Book Description
Mathematical and Statistical Estimation Approaches in Epidemiology compiles t- oretical and practical contributions of experts in the analysis of infectious disease epidemics in a single volume. Recent collections have focused in the analyses and simulation of deterministic and stochastic models whose aim is to identify and rank epidemiological and social mechanisms responsible for disease transmission. The contributions in this volume focus on the connections between models and disease data with emphasis on the application of mathematical and statistical approaches that quantify model and data uncertainty. The book is aimed at public health experts, applied mathematicians and sci- tists in the life and social sciences, particularly graduate or advanced undergraduate students, who are interested not only in building and connecting models to data but also in applying and developing methods that quantify uncertainty in the context of infectious diseases. Chowell and Brauer open this volume with an overview of the classical disease transmission models of Kermack-McKendrick including extensions that account for increased levels of epidemiological heterogeneity. Their theoretical tour is followed by the introduction of a simple methodology for the estimation of, the basic reproduction number,R . The use of this methodology 0 is illustrated, using regional data for 1918–1919 and 1968 in uenza pandemics.

Statistics for Epidemiology

Statistics for Epidemiology PDF Author: Nicholas P. Jewell
Publisher: CRC Press
ISBN: 0203496868
Category : Medical
Languages : en
Pages : 376

Get Book Here

Book Description
Statistical ideas have been integral to the development of epidemiology and continue to provide the tools needed to interpret epidemiological studies. Although epidemiologists do not need a highly mathematical background in statistical theory to conduct and interpret such studies, they do need more than an encyclopedia of "recipes." Statistics for Epidemiology achieves just the right balance between the two approaches, building an intuitive understanding of the methods most important to practitioners and the skills to use them effectively. It develops the techniques for analyzing simple risk factors and disease data, with step-by-step extensions that include the use of binary regression. It covers the logistic regression model in detail and contrasts it with the Cox model for time-to-incidence data. The author uses a few simple case studies to guide readers from elementary analyses to more complex regression modeling. Following these examples through several chapters makes it easy to compare the interpretations that emerge from varying approaches. Written by one of the top biostatisticians in the field, Statistics for Epidemiology stands apart in its focus on interpretation and in the depth of understanding it provides. It lays the groundwork that all public health professionals, epidemiologists, and biostatisticians need to successfully design, conduct, and analyze epidemiological studies.