Author: Graeme D Hutcheson
Publisher: SAGE
ISBN: 1849202486
Category : Business & Economics
Languages : en
Pages : 255
Book Description
Bringing to life the most widely used quantitative measurements and statistical techniques in marketing, this book is packed with user-friendly descriptions, examples and study applications. The process of making marketing decisions is frequently dependent on quantitative analysis and the use of specific statistical tools and techniques which can be tailored and adapted to solve particular marketing problems. Any student hoping to enter the world of marketing will need to show that they understand and have mastered these techniques. A bank of downloadable data sets to compliment the tables provided in the textbook are provided free for you.
Statistical Modeling for Management
Author: Graeme D Hutcheson
Publisher: SAGE
ISBN: 1849202486
Category : Business & Economics
Languages : en
Pages : 255
Book Description
Bringing to life the most widely used quantitative measurements and statistical techniques in marketing, this book is packed with user-friendly descriptions, examples and study applications. The process of making marketing decisions is frequently dependent on quantitative analysis and the use of specific statistical tools and techniques which can be tailored and adapted to solve particular marketing problems. Any student hoping to enter the world of marketing will need to show that they understand and have mastered these techniques. A bank of downloadable data sets to compliment the tables provided in the textbook are provided free for you.
Publisher: SAGE
ISBN: 1849202486
Category : Business & Economics
Languages : en
Pages : 255
Book Description
Bringing to life the most widely used quantitative measurements and statistical techniques in marketing, this book is packed with user-friendly descriptions, examples and study applications. The process of making marketing decisions is frequently dependent on quantitative analysis and the use of specific statistical tools and techniques which can be tailored and adapted to solve particular marketing problems. Any student hoping to enter the world of marketing will need to show that they understand and have mastered these techniques. A bank of downloadable data sets to compliment the tables provided in the textbook are provided free for you.
Multivariate Statistical Modeling in Engineering and Management
Author: Jhareswar Maiti
Publisher: CRC Press
ISBN: 1000618420
Category : Business & Economics
Languages : en
Pages : 421
Book Description
The book focuses on problem solving for practitioners and model building for academicians under multivariate situations. This book helps readers in understanding the issues, such as knowing variability, extracting patterns, building relationships, and making objective decisions. A large number of multivariate statistical models are covered in the book. The readers will learn how a practical problem can be converted to a statistical problem and how the statistical solution can be interpreted as a practical solution. Key features: Links data generation process with statistical distributions in multivariate domain Provides step by step procedure for estimating parameters of developed models Provides blueprint for data driven decision making Includes practical examples and case studies relevant for intended audiences The book will help everyone involved in data driven problem solving, modeling and decision making.
Publisher: CRC Press
ISBN: 1000618420
Category : Business & Economics
Languages : en
Pages : 421
Book Description
The book focuses on problem solving for practitioners and model building for academicians under multivariate situations. This book helps readers in understanding the issues, such as knowing variability, extracting patterns, building relationships, and making objective decisions. A large number of multivariate statistical models are covered in the book. The readers will learn how a practical problem can be converted to a statistical problem and how the statistical solution can be interpreted as a practical solution. Key features: Links data generation process with statistical distributions in multivariate domain Provides step by step procedure for estimating parameters of developed models Provides blueprint for data driven decision making Includes practical examples and case studies relevant for intended audiences The book will help everyone involved in data driven problem solving, modeling and decision making.
Statistical Methods in Customer Relationship Management
Author: V. Kumar
Publisher: John Wiley & Sons
ISBN: 1118349199
Category : Mathematics
Languages : en
Pages : 227
Book Description
Statistical Methods in Customer Relationship Management focuses on the quantitative and modeling aspects of customer management strategies that lead to future firm profitability, with emphasis on developing an understanding of Customer Relationship Management (CRM) models as the guiding concept for profitable customer management. To understand and explore the functioning of CRM models, this book traces the management strategies throughout a customer’s tenure with a firm. Furthermore, the book explores in detail CRM models for customer acquisition, customer retention, customer acquisition and retention, customer churn, and customer win back. Statistical Methods in Customer Relationship Management: Provides an overview of a CRM system, introducing key concepts and metrics needed to understand and implement these models. Focuses on five CRM models: customer acquisition, customer retention, customer churn, and customer win back with supporting case studies. Explores each model in detail, from investigating the need for CRM models to looking at the future of the models. Presents models and concepts that span across the introductory, advanced, and specialist levels. Academics and practitioners involved in the area of CRM as well as instructors of applied statistics and quantitative marketing courses will benefit from this book.
Publisher: John Wiley & Sons
ISBN: 1118349199
Category : Mathematics
Languages : en
Pages : 227
Book Description
Statistical Methods in Customer Relationship Management focuses on the quantitative and modeling aspects of customer management strategies that lead to future firm profitability, with emphasis on developing an understanding of Customer Relationship Management (CRM) models as the guiding concept for profitable customer management. To understand and explore the functioning of CRM models, this book traces the management strategies throughout a customer’s tenure with a firm. Furthermore, the book explores in detail CRM models for customer acquisition, customer retention, customer acquisition and retention, customer churn, and customer win back. Statistical Methods in Customer Relationship Management: Provides an overview of a CRM system, introducing key concepts and metrics needed to understand and implement these models. Focuses on five CRM models: customer acquisition, customer retention, customer churn, and customer win back with supporting case studies. Explores each model in detail, from investigating the need for CRM models to looking at the future of the models. Presents models and concepts that span across the introductory, advanced, and specialist levels. Academics and practitioners involved in the area of CRM as well as instructors of applied statistics and quantitative marketing courses will benefit from this book.
Statistical Models and Methods for Financial Markets
Author: Tze Leung Lai
Publisher: Springer Science & Business Media
ISBN: 0387778276
Category : Business & Economics
Languages : en
Pages : 363
Book Description
The idea of writing this bookarosein 2000when the ?rst author wasassigned to teach the required course STATS 240 (Statistical Methods in Finance) in the new M. S. program in ?nancial mathematics at Stanford, which is an interdisciplinary program that aims to provide a master’s-level education in applied mathematics, statistics, computing, ?nance, and economics. Students in the programhad di?erent backgroundsin statistics. Some had only taken a basic course in statistical inference, while others had taken a broad spectrum of M. S. - and Ph. D. -level statistics courses. On the other hand, all of them had already taken required core courses in investment theory and derivative pricing, and STATS 240 was supposed to link the theory and pricing formulas to real-world data and pricing or investment strategies. Besides students in theprogram,thecoursealso attractedmanystudentsfromother departments in the university, further increasing the heterogeneity of students, as many of them had a strong background in mathematical and statistical modeling from the mathematical, physical, and engineering sciences but no previous experience in ?nance. To address the diversity in background but common strong interest in the subject and in a potential career as a “quant” in the ?nancialindustry,thecoursematerialwascarefullychosennotonlytopresent basic statistical methods of importance to quantitative ?nance but also to summarize domain knowledge in ?nance and show how it can be combined with statistical modeling in ?nancial analysis and decision making. The course material evolved over the years, especially after the second author helped as the head TA during the years 2004 and 2005.
Publisher: Springer Science & Business Media
ISBN: 0387778276
Category : Business & Economics
Languages : en
Pages : 363
Book Description
The idea of writing this bookarosein 2000when the ?rst author wasassigned to teach the required course STATS 240 (Statistical Methods in Finance) in the new M. S. program in ?nancial mathematics at Stanford, which is an interdisciplinary program that aims to provide a master’s-level education in applied mathematics, statistics, computing, ?nance, and economics. Students in the programhad di?erent backgroundsin statistics. Some had only taken a basic course in statistical inference, while others had taken a broad spectrum of M. S. - and Ph. D. -level statistics courses. On the other hand, all of them had already taken required core courses in investment theory and derivative pricing, and STATS 240 was supposed to link the theory and pricing formulas to real-world data and pricing or investment strategies. Besides students in theprogram,thecoursealso attractedmanystudentsfromother departments in the university, further increasing the heterogeneity of students, as many of them had a strong background in mathematical and statistical modeling from the mathematical, physical, and engineering sciences but no previous experience in ?nance. To address the diversity in background but common strong interest in the subject and in a potential career as a “quant” in the ?nancialindustry,thecoursematerialwascarefullychosennotonlytopresent basic statistical methods of importance to quantitative ?nance but also to summarize domain knowledge in ?nance and show how it can be combined with statistical modeling in ?nancial analysis and decision making. The course material evolved over the years, especially after the second author helped as the head TA during the years 2004 and 2005.
Statistical Modeling and Analysis for Complex Data Problems
Author: Pierre Duchesne
Publisher: Springer Science & Business Media
ISBN: 0387245553
Category : Mathematics
Languages : en
Pages : 330
Book Description
This book reviews some of today’s more complex problems, and reflects some of the important research directions in the field. Twenty-nine authors – largely from Montreal’s GERAD Multi-University Research Center and who work in areas of theoretical statistics, applied statistics, probability theory, and stochastic processes – present survey chapters on various theoretical and applied problems of importance and interest to researchers and students across a number of academic domains.
Publisher: Springer Science & Business Media
ISBN: 0387245553
Category : Mathematics
Languages : en
Pages : 330
Book Description
This book reviews some of today’s more complex problems, and reflects some of the important research directions in the field. Twenty-nine authors – largely from Montreal’s GERAD Multi-University Research Center and who work in areas of theoretical statistics, applied statistics, probability theory, and stochastic processes – present survey chapters on various theoretical and applied problems of importance and interest to researchers and students across a number of academic domains.
Statistical Modeling Using Local Gaussian Approximation
Author: Dag Tjøstheim
Publisher: Academic Press
ISBN: 0128154454
Category : Business & Economics
Languages : en
Pages : 460
Book Description
Statistical Modeling using Local Gaussian Approximation extends powerful characteristics of the Gaussian distribution, perhaps, the most well-known and most used distribution in statistics, to a large class of non-Gaussian and nonlinear situations through local approximation. This extension enables the reader to follow new methods in assessing dependence and conditional dependence, in estimating probability and spectral density functions, and in discrimination. Chapters in this release cover Parametric, nonparametric, locally parametric, Dependence, Local Gaussian correlation and dependence, Local Gaussian correlation and the copula, Applications in finance, and more. Additional chapters explores Measuring dependence and testing for independence, Time series dependence and spectral analysis, Multivariate density estimation, Conditional density estimation, The local Gaussian partial correlation, Regression and conditional regression quantiles, and a A local Gaussian Fisher discriminant. - Reviews local dependence modeling with applications to time series and finance markets - Introduces new techniques for density estimation, conditional density estimation, and tests of conditional independence with applications in economics - Evaluates local spectral analysis, discovering hidden frequencies in extremes and hidden phase differences - Integrates textual content with three useful R packages
Publisher: Academic Press
ISBN: 0128154454
Category : Business & Economics
Languages : en
Pages : 460
Book Description
Statistical Modeling using Local Gaussian Approximation extends powerful characteristics of the Gaussian distribution, perhaps, the most well-known and most used distribution in statistics, to a large class of non-Gaussian and nonlinear situations through local approximation. This extension enables the reader to follow new methods in assessing dependence and conditional dependence, in estimating probability and spectral density functions, and in discrimination. Chapters in this release cover Parametric, nonparametric, locally parametric, Dependence, Local Gaussian correlation and dependence, Local Gaussian correlation and the copula, Applications in finance, and more. Additional chapters explores Measuring dependence and testing for independence, Time series dependence and spectral analysis, Multivariate density estimation, Conditional density estimation, The local Gaussian partial correlation, Regression and conditional regression quantiles, and a A local Gaussian Fisher discriminant. - Reviews local dependence modeling with applications to time series and finance markets - Introduces new techniques for density estimation, conditional density estimation, and tests of conditional independence with applications in economics - Evaluates local spectral analysis, discovering hidden frequencies in extremes and hidden phase differences - Integrates textual content with three useful R packages
Monte-Carlo Simulation-Based Statistical Modeling
Author: Ding-Geng (Din) Chen
Publisher: Springer
ISBN: 9811033072
Category : Medical
Languages : en
Pages : 440
Book Description
This book brings together expert researchers engaged in Monte-Carlo simulation-based statistical modeling, offering them a forum to present and discuss recent issues in methodological development as well as public health applications. It is divided into three parts, with the first providing an overview of Monte-Carlo techniques, the second focusing on missing data Monte-Carlo methods, and the third addressing Bayesian and general statistical modeling using Monte-Carlo simulations. The data and computer programs used here will also be made publicly available, allowing readers to replicate the model development and data analysis presented in each chapter, and to readily apply them in their own research. Featuring highly topical content, the book has the potential to impact model development and data analyses across a wide spectrum of fields, and to spark further research in this direction.
Publisher: Springer
ISBN: 9811033072
Category : Medical
Languages : en
Pages : 440
Book Description
This book brings together expert researchers engaged in Monte-Carlo simulation-based statistical modeling, offering them a forum to present and discuss recent issues in methodological development as well as public health applications. It is divided into three parts, with the first providing an overview of Monte-Carlo techniques, the second focusing on missing data Monte-Carlo methods, and the third addressing Bayesian and general statistical modeling using Monte-Carlo simulations. The data and computer programs used here will also be made publicly available, allowing readers to replicate the model development and data analysis presented in each chapter, and to readily apply them in their own research. Featuring highly topical content, the book has the potential to impact model development and data analyses across a wide spectrum of fields, and to spark further research in this direction.
Applied Statistical Modeling and Data Analytics
Author: Srikanta Mishra
Publisher: Elsevier
ISBN: 0128032804
Category : Science
Languages : en
Pages : 252
Book Description
Applied Statistical Modeling and Data Analytics: A Practical Guide for the Petroleum Geosciences provides a practical guide to many of the classical and modern statistical techniques that have become established for oil and gas professionals in recent years. It serves as a "how to" reference volume for the practicing petroleum engineer or geoscientist interested in applying statistical methods in formation evaluation, reservoir characterization, reservoir modeling and management, and uncertainty quantification. Beginning with a foundational discussion of exploratory data analysis, probability distributions and linear regression modeling, the book focuses on fundamentals and practical examples of such key topics as multivariate analysis, uncertainty quantification, data-driven modeling, and experimental design and response surface analysis. Data sets from the petroleum geosciences are extensively used to demonstrate the applicability of these techniques. The book will also be useful for professionals dealing with subsurface flow problems in hydrogeology, geologic carbon sequestration, and nuclear waste disposal. - Authored by internationally renowned experts in developing and applying statistical methods for oil & gas and other subsurface problem domains - Written by practitioners for practitioners - Presents an easy to follow narrative which progresses from simple concepts to more challenging ones - Includes online resources with software applications and practical examples for the most relevant and popular statistical methods, using data sets from the petroleum geosciences - Addresses the theory and practice of statistical modeling and data analytics from the perspective of petroleum geoscience applications
Publisher: Elsevier
ISBN: 0128032804
Category : Science
Languages : en
Pages : 252
Book Description
Applied Statistical Modeling and Data Analytics: A Practical Guide for the Petroleum Geosciences provides a practical guide to many of the classical and modern statistical techniques that have become established for oil and gas professionals in recent years. It serves as a "how to" reference volume for the practicing petroleum engineer or geoscientist interested in applying statistical methods in formation evaluation, reservoir characterization, reservoir modeling and management, and uncertainty quantification. Beginning with a foundational discussion of exploratory data analysis, probability distributions and linear regression modeling, the book focuses on fundamentals and practical examples of such key topics as multivariate analysis, uncertainty quantification, data-driven modeling, and experimental design and response surface analysis. Data sets from the petroleum geosciences are extensively used to demonstrate the applicability of these techniques. The book will also be useful for professionals dealing with subsurface flow problems in hydrogeology, geologic carbon sequestration, and nuclear waste disposal. - Authored by internationally renowned experts in developing and applying statistical methods for oil & gas and other subsurface problem domains - Written by practitioners for practitioners - Presents an easy to follow narrative which progresses from simple concepts to more challenging ones - Includes online resources with software applications and practical examples for the most relevant and popular statistical methods, using data sets from the petroleum geosciences - Addresses the theory and practice of statistical modeling and data analytics from the perspective of petroleum geoscience applications
JMP Means Business
Author: Josef Schmee
Publisher:
ISBN: 9781642955156
Category :
Languages : en
Pages : 608
Book Description
JMP Means Business: Statistical Models for Management, by Josef Schmee and Jane Oppenlander, covers basic methods and models of classical statistics. Designed for business and MBA students, as well as industry professionals who need to use and interpret statistics, JMP Means Business covers data collection, descriptive statistics, distributions, confidence intervals and hypothesis tests, analysis of variance, contingency tables, simple and multiple regression, and exponential smoothing of time series. The easy-to-use format includes verbal and graphical explanations and promotes standard problem-solving techniques, with a limited use of formulas. Examples from business and industry serve to introduce each topic. Each example starts with a problem definition and data requirements, followed by a step-by-step analysis with JMP. Relevant output from this analysis is used to explain each method and to provide the basis for interpretation. Each chapter ends with a summary and a collection of problems for further study.
Publisher:
ISBN: 9781642955156
Category :
Languages : en
Pages : 608
Book Description
JMP Means Business: Statistical Models for Management, by Josef Schmee and Jane Oppenlander, covers basic methods and models of classical statistics. Designed for business and MBA students, as well as industry professionals who need to use and interpret statistics, JMP Means Business covers data collection, descriptive statistics, distributions, confidence intervals and hypothesis tests, analysis of variance, contingency tables, simple and multiple regression, and exponential smoothing of time series. The easy-to-use format includes verbal and graphical explanations and promotes standard problem-solving techniques, with a limited use of formulas. Examples from business and industry serve to introduce each topic. Each example starts with a problem definition and data requirements, followed by a step-by-step analysis with JMP. Relevant output from this analysis is used to explain each method and to provide the basis for interpretation. Each chapter ends with a summary and a collection of problems for further study.
Statistical Modeling for Degradation Data
Author: Ding-Geng (Din) Chen
Publisher: Springer
ISBN: 9811051941
Category : Mathematics
Languages : en
Pages : 382
Book Description
This book focuses on the statistical aspects of the analysis of degradation data. In recent years, degradation data analysis has come to play an increasingly important role in different disciplines such as reliability, public health sciences, and finance. For example, information on products’ reliability can be obtained by analyzing degradation data. In addition, statistical modeling and inference techniques have been developed on the basis of different degradation measures. The book brings together experts engaged in statistical modeling and inference, presenting and discussing important recent advances in degradation data analysis and related applications. The topics covered are timely and have considerable potential to impact both statistics and reliability engineering.
Publisher: Springer
ISBN: 9811051941
Category : Mathematics
Languages : en
Pages : 382
Book Description
This book focuses on the statistical aspects of the analysis of degradation data. In recent years, degradation data analysis has come to play an increasingly important role in different disciplines such as reliability, public health sciences, and finance. For example, information on products’ reliability can be obtained by analyzing degradation data. In addition, statistical modeling and inference techniques have been developed on the basis of different degradation measures. The book brings together experts engaged in statistical modeling and inference, presenting and discussing important recent advances in degradation data analysis and related applications. The topics covered are timely and have considerable potential to impact both statistics and reliability engineering.