Author: Daniel Powers
Publisher: Emerald Group Publishing
ISBN: 1781906599
Category : Psychology
Languages : en
Pages : 330
Book Description
This book provides a comprehensive introduction to methods and models for categorical data analysis and their applications in social science research. Companion website also available, at https://webspace.utexas.edu/dpowers/www/
Statistical Methods for Categorical Data Analysis
Author: Daniel Powers
Publisher: Emerald Group Publishing
ISBN: 1781906599
Category : Psychology
Languages : en
Pages : 330
Book Description
This book provides a comprehensive introduction to methods and models for categorical data analysis and their applications in social science research. Companion website also available, at https://webspace.utexas.edu/dpowers/www/
Publisher: Emerald Group Publishing
ISBN: 1781906599
Category : Psychology
Languages : en
Pages : 330
Book Description
This book provides a comprehensive introduction to methods and models for categorical data analysis and their applications in social science research. Companion website also available, at https://webspace.utexas.edu/dpowers/www/
An Introduction to Categorical Data Analysis
Author: Alan Agresti
Publisher: John Wiley & Sons
ISBN: 1119405289
Category : Mathematics
Languages : en
Pages : 414
Book Description
A valuable new edition of a standard reference The use of statistical methods for categorical data has increased dramatically, particularly for applications in the biomedical and social sciences. An Introduction to Categorical Data Analysis, Third Edition summarizes these methods and shows readers how to use them using software. Readers will find a unified generalized linear models approach that connects logistic regression and loglinear models for discrete data with normal regression for continuous data. Adding to the value in the new edition is: • Illustrations of the use of R software to perform all the analyses in the book • A new chapter on alternative methods for categorical data, including smoothing and regularization methods (such as the lasso), classification methods such as linear discriminant analysis and classification trees, and cluster analysis • New sections in many chapters introducing the Bayesian approach for the methods of that chapter • More than 70 analyses of data sets to illustrate application of the methods, and about 200 exercises, many containing other data sets • An appendix showing how to use SAS, Stata, and SPSS, and an appendix with short solutions to most odd-numbered exercises Written in an applied, nontechnical style, this book illustrates the methods using a wide variety of real data, including medical clinical trials, environmental questions, drug use by teenagers, horseshoe crab mating, basketball shooting, correlates of happiness, and much more. An Introduction to Categorical Data Analysis, Third Edition is an invaluable tool for statisticians and biostatisticians as well as methodologists in the social and behavioral sciences, medicine and public health, marketing, education, and the biological and agricultural sciences.
Publisher: John Wiley & Sons
ISBN: 1119405289
Category : Mathematics
Languages : en
Pages : 414
Book Description
A valuable new edition of a standard reference The use of statistical methods for categorical data has increased dramatically, particularly for applications in the biomedical and social sciences. An Introduction to Categorical Data Analysis, Third Edition summarizes these methods and shows readers how to use them using software. Readers will find a unified generalized linear models approach that connects logistic regression and loglinear models for discrete data with normal regression for continuous data. Adding to the value in the new edition is: • Illustrations of the use of R software to perform all the analyses in the book • A new chapter on alternative methods for categorical data, including smoothing and regularization methods (such as the lasso), classification methods such as linear discriminant analysis and classification trees, and cluster analysis • New sections in many chapters introducing the Bayesian approach for the methods of that chapter • More than 70 analyses of data sets to illustrate application of the methods, and about 200 exercises, many containing other data sets • An appendix showing how to use SAS, Stata, and SPSS, and an appendix with short solutions to most odd-numbered exercises Written in an applied, nontechnical style, this book illustrates the methods using a wide variety of real data, including medical clinical trials, environmental questions, drug use by teenagers, horseshoe crab mating, basketball shooting, correlates of happiness, and much more. An Introduction to Categorical Data Analysis, Third Edition is an invaluable tool for statisticians and biostatisticians as well as methodologists in the social and behavioral sciences, medicine and public health, marketing, education, and the biological and agricultural sciences.
Statistical Analysis of Categorical Data
Author: Chris J. Lloyd
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 496
Book Description
Accessible, up-to-date coverage of a broad range of modern and traditional methods. The ability to understand and analyze categorical, or count, data is crucial to the success of statisticians in a wide variety of fields, including biomedicine, ecology, the social sciences, marketing, and many more. Statistical Analysis of Categorical Data provides thorough, clear, up-to-date explanations of all important methods of categorical data analysis at a level accessible to anyone with a solid undergraduate knowledge of statistics. Featuring a liberal use of real-world examples as well as a regression-based approach familiar to most students, this book reviews pertinent statistical theory, including advanced topics such as Score statistics and the transformed central limit theorem. It presents the distribution theory of Poisson as well as multinomial variables, and it points out the connections between them. Complete with numerous illustrations and exercises, this book covers the full range of topics necessary to develop a well-rounded understanding of modern categorical data analysis, including: * Logistic regression and log-linear models. * Exact conditional methods. * Generalized linear and additive models. * Smoothing count data with practical implementations in S-plus software. * Thorough description and analysis of five important computer packages. Supported by an ftp site, which describes the facilities important to a statistician wanting to analyze and report on categorical data, Statistical Analysis of Categorical Data is an excellent resource for students, practicing statisticians, and researchers with a special interest in count data.
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 496
Book Description
Accessible, up-to-date coverage of a broad range of modern and traditional methods. The ability to understand and analyze categorical, or count, data is crucial to the success of statisticians in a wide variety of fields, including biomedicine, ecology, the social sciences, marketing, and many more. Statistical Analysis of Categorical Data provides thorough, clear, up-to-date explanations of all important methods of categorical data analysis at a level accessible to anyone with a solid undergraduate knowledge of statistics. Featuring a liberal use of real-world examples as well as a regression-based approach familiar to most students, this book reviews pertinent statistical theory, including advanced topics such as Score statistics and the transformed central limit theorem. It presents the distribution theory of Poisson as well as multinomial variables, and it points out the connections between them. Complete with numerous illustrations and exercises, this book covers the full range of topics necessary to develop a well-rounded understanding of modern categorical data analysis, including: * Logistic regression and log-linear models. * Exact conditional methods. * Generalized linear and additive models. * Smoothing count data with practical implementations in S-plus software. * Thorough description and analysis of five important computer packages. Supported by an ftp site, which describes the facilities important to a statistician wanting to analyze and report on categorical data, Statistical Analysis of Categorical Data is an excellent resource for students, practicing statisticians, and researchers with a special interest in count data.
Lectures on Categorical Data Analysis
Author: Tamás Rudas
Publisher: Springer
ISBN: 1493976931
Category : Social Science
Languages : en
Pages : 292
Book Description
This book offers a relatively self-contained presentation of the fundamental results in categorical data analysis, which plays a central role among the statistical techniques applied in the social, political and behavioral sciences, as well as in marketing and medical and biological research. The methods applied are mainly aimed at understanding the structure of associations among variables and the effects of other variables on these interactions. A great advantage of studying categorical data analysis is that many concepts in statistics become transparent when discussed in a categorical data context, and, in many places, the book takes this opportunity to comment on general principles and methods in statistics, addressing not only the “how” but also the “why.” Assuming minimal background in calculus, linear algebra, probability theory and statistics, the book is designed to be used in upper-undergraduate and graduate-level courses in the field and in more general statistical methodology courses, as well as a self-study resource for researchers and professionals. The book covers such key issues as: higher order interactions among categorical variables; the use of the delta-method to correctly determine asymptotic standard errors for complex quantities reported in surveys; the fundamentals of the main theories of causal analysis based on observational data; the usefulness of the odds ratio as a measure of association; and a detailed discussion of log-linear models, including graphical models. The book contains over 200 problems, many of which may also be used as starting points for undergraduate research projects. The material can be used by students toward a variety of goals, depending on the degree of theory or application desired.
Publisher: Springer
ISBN: 1493976931
Category : Social Science
Languages : en
Pages : 292
Book Description
This book offers a relatively self-contained presentation of the fundamental results in categorical data analysis, which plays a central role among the statistical techniques applied in the social, political and behavioral sciences, as well as in marketing and medical and biological research. The methods applied are mainly aimed at understanding the structure of associations among variables and the effects of other variables on these interactions. A great advantage of studying categorical data analysis is that many concepts in statistics become transparent when discussed in a categorical data context, and, in many places, the book takes this opportunity to comment on general principles and methods in statistics, addressing not only the “how” but also the “why.” Assuming minimal background in calculus, linear algebra, probability theory and statistics, the book is designed to be used in upper-undergraduate and graduate-level courses in the field and in more general statistical methodology courses, as well as a self-study resource for researchers and professionals. The book covers such key issues as: higher order interactions among categorical variables; the use of the delta-method to correctly determine asymptotic standard errors for complex quantities reported in surveys; the fundamentals of the main theories of causal analysis based on observational data; the usefulness of the odds ratio as a measure of association; and a detailed discussion of log-linear models, including graphical models. The book contains over 200 problems, many of which may also be used as starting points for undergraduate research projects. The material can be used by students toward a variety of goals, depending on the degree of theory or application desired.
Discrete Data Analysis with R
Author: Michael Friendly
Publisher: CRC Press
ISBN: 1498725864
Category : Mathematics
Languages : en
Pages : 700
Book Description
An Applied Treatment of Modern Graphical Methods for Analyzing Categorical DataDiscrete Data Analysis with R: Visualization and Modeling Techniques for Categorical and Count Data presents an applied treatment of modern methods for the analysis of categorical data, both discrete response data and frequency data. It explains how to use graphical meth
Publisher: CRC Press
ISBN: 1498725864
Category : Mathematics
Languages : en
Pages : 700
Book Description
An Applied Treatment of Modern Graphical Methods for Analyzing Categorical DataDiscrete Data Analysis with R: Visualization and Modeling Techniques for Categorical and Count Data presents an applied treatment of modern methods for the analysis of categorical data, both discrete response data and frequency data. It explains how to use graphical meth
Learning Statistics with R
Author: Daniel Navarro
Publisher: Lulu.com
ISBN: 1326189727
Category : Computers
Languages : en
Pages : 617
Book Description
"Learning Statistics with R" covers the contents of an introductory statistics class, as typically taught to undergraduate psychology students, focusing on the use of the R statistical software and adopting a light, conversational style throughout. The book discusses how to get started in R, and gives an introduction to data manipulation and writing scripts. From a statistical perspective, the book discusses descriptive statistics and graphing first, followed by chapters on probability theory, sampling and estimation, and null hypothesis testing. After introducing the theory, the book covers the analysis of contingency tables, t-tests, ANOVAs and regression. Bayesian statistics are covered at the end of the book. For more information (and the opportunity to check the book out before you buy!) visit http://ua.edu.au/ccs/teaching/lsr or http://learningstatisticswithr.com
Publisher: Lulu.com
ISBN: 1326189727
Category : Computers
Languages : en
Pages : 617
Book Description
"Learning Statistics with R" covers the contents of an introductory statistics class, as typically taught to undergraduate psychology students, focusing on the use of the R statistical software and adopting a light, conversational style throughout. The book discusses how to get started in R, and gives an introduction to data manipulation and writing scripts. From a statistical perspective, the book discusses descriptive statistics and graphing first, followed by chapters on probability theory, sampling and estimation, and null hypothesis testing. After introducing the theory, the book covers the analysis of contingency tables, t-tests, ANOVAs and regression. Bayesian statistics are covered at the end of the book. For more information (and the opportunity to check the book out before you buy!) visit http://ua.edu.au/ccs/teaching/lsr or http://learningstatisticswithr.com
A Course in Categorical Data Analysis
Author: Thomas Leonard
Publisher: CRC Press
ISBN: 9781584881803
Category : Mathematics
Languages : en
Pages : 208
Book Description
Categorical data-comprising counts of individuals, objects, or entities in different categories-emerge frequently from many areas of study, including medicine, sociology, geology, and education. They provide important statistical information that can lead to real-life conclusions and the discovery of fresh knowledge. Therefore, the ability to manipulate, understand, and interpret categorical data becomes of interest-if not essential-to professionals and students in a broad range of disciplines. Although t-tests, linear regression, and analysis of variance are useful, valid methods for analysis of measurement data, categorical data requires a different methodology and techniques typically not encountered in introductory statistics courses. Developed from long experience in teaching categorical analysis to a multidisciplinary mix of undergraduate and graduate students, A Course in Categorical Data Analysis presents the easiest, most straightforward ways of extracting real-life conclusions from contingency tables. The author uses a Fisherian approach to categorical data analysis and incorporates numerous examples and real data sets. Although he offers S-PLUS routines through the Internet, readers do not need full knowledge of a statistical software package. In this unique text, the author chooses methods and an approach that nurtures intuitive thinking. He trains his readers to focus not on finding a model that fits the data, but on using different models that may lead to meaningful conclusions. The book offers some simple, innovative techniques not highighted in other texts that help make the book accessible to a broad, interdisciplinary audience. A Course in Categorical Data Analysis enables readers to quickly use its offering of tools for drawing scientific, medical, or real-life conclusions from categorical data sets.
Publisher: CRC Press
ISBN: 9781584881803
Category : Mathematics
Languages : en
Pages : 208
Book Description
Categorical data-comprising counts of individuals, objects, or entities in different categories-emerge frequently from many areas of study, including medicine, sociology, geology, and education. They provide important statistical information that can lead to real-life conclusions and the discovery of fresh knowledge. Therefore, the ability to manipulate, understand, and interpret categorical data becomes of interest-if not essential-to professionals and students in a broad range of disciplines. Although t-tests, linear regression, and analysis of variance are useful, valid methods for analysis of measurement data, categorical data requires a different methodology and techniques typically not encountered in introductory statistics courses. Developed from long experience in teaching categorical analysis to a multidisciplinary mix of undergraduate and graduate students, A Course in Categorical Data Analysis presents the easiest, most straightforward ways of extracting real-life conclusions from contingency tables. The author uses a Fisherian approach to categorical data analysis and incorporates numerous examples and real data sets. Although he offers S-PLUS routines through the Internet, readers do not need full knowledge of a statistical software package. In this unique text, the author chooses methods and an approach that nurtures intuitive thinking. He trains his readers to focus not on finding a model that fits the data, but on using different models that may lead to meaningful conclusions. The book offers some simple, innovative techniques not highighted in other texts that help make the book accessible to a broad, interdisciplinary audience. A Course in Categorical Data Analysis enables readers to quickly use its offering of tools for drawing scientific, medical, or real-life conclusions from categorical data sets.
Analysis of Categorical Data with R
Author: Christopher R. Bilder
Publisher: CRC Press
ISBN: 1040087744
Category : Mathematics
Languages : en
Pages : 706
Book Description
Analysis of Categorical Data with R, Second Edition presents a modern account of categorical data analysis using the R software environment. It covers recent techniques of model building and assessment for binary, multicategory, and count response variables and discusses fundamentals, such as odds ratio and probability estimation. The authors give detailed advice and guidelines on which procedures to use and why to use them. The second edition is a substantial update of the first based on the authors’ experiences of teaching from the book for nearly a decade. The book is organized as before, but with new content throughout, and there are two new substantive topics in the advanced topics chapter—group testing and splines. The computing has been completely updated, with the "emmeans" package now integrated into the book. The examples have also been updated, notably to include new examples based on COVID-19, and there are more than 90 new exercises in the book. The solutions manual and teaching videos have also been updated. Features: Requires no prior experience with R, and offers an introduction to the essential features and functions of R Includes numerous examples from medicine, psychology, sports, ecology, and many other areas Integrates extensive R code and output Graphically demonstrates many of the features and properties of various analysis methods Offers a substantial number of exercises in all chapters, enabling use as a course text or for self-study Supplemented by a website with data sets, code, and teaching videos Analysis of Categorical Data with R, Second Edition is primarily designed for a course on categorical data analysis taught at the advanced undergraduate or graduate level. Such a course could be taught in a statistics or biostatistics department, or within mathematics, psychology, social science, ecology, or another quantitative discipline. It could also be used by a self-learner and would make an ideal reference for a researcher from any discipline where categorical data arise.
Publisher: CRC Press
ISBN: 1040087744
Category : Mathematics
Languages : en
Pages : 706
Book Description
Analysis of Categorical Data with R, Second Edition presents a modern account of categorical data analysis using the R software environment. It covers recent techniques of model building and assessment for binary, multicategory, and count response variables and discusses fundamentals, such as odds ratio and probability estimation. The authors give detailed advice and guidelines on which procedures to use and why to use them. The second edition is a substantial update of the first based on the authors’ experiences of teaching from the book for nearly a decade. The book is organized as before, but with new content throughout, and there are two new substantive topics in the advanced topics chapter—group testing and splines. The computing has been completely updated, with the "emmeans" package now integrated into the book. The examples have also been updated, notably to include new examples based on COVID-19, and there are more than 90 new exercises in the book. The solutions manual and teaching videos have also been updated. Features: Requires no prior experience with R, and offers an introduction to the essential features and functions of R Includes numerous examples from medicine, psychology, sports, ecology, and many other areas Integrates extensive R code and output Graphically demonstrates many of the features and properties of various analysis methods Offers a substantial number of exercises in all chapters, enabling use as a course text or for self-study Supplemented by a website with data sets, code, and teaching videos Analysis of Categorical Data with R, Second Edition is primarily designed for a course on categorical data analysis taught at the advanced undergraduate or graduate level. Such a course could be taught in a statistics or biostatistics department, or within mathematics, psychology, social science, ecology, or another quantitative discipline. It could also be used by a self-learner and would make an ideal reference for a researcher from any discipline where categorical data arise.
The Statistical Analysis of Categorical Data
Author: Erling B. Andersen
Publisher: Springer Science & Business Media
ISBN: 364297225X
Category : Business & Economics
Languages : en
Pages : 533
Book Description
The aim of this book is to give an up to date account of the most commonly uses statist i cal models for categoriCal data. The emphasis is on the connection between theory and appIications to real data sets. The book only covers models for categorical data. Various n:t0dels for mixed continuous and categorical data are thus excluded. The book is written as a textbook, although many methods and results are quite recent. This should imply, that the book can be used for a graduate course in categorical data analysis. With this aim in mind chapters 3 to 12 are concluded with a set of exer eises. In many cases, the data sets are those data sets, which were not included in the examples of the book, although they at one point in time were regarded as potential can didates for an example. A certain amount of general knowledge of statistical theory is necessary to fully benefit from the book. A summary of the basic statistical concepts deemed necessary pre requisites is given in chapter 2. The mathematical level is only moderately high, but the account in chapter 3 of basic properties of exponential families and the parametric multinomial distribution is made as mathematical preeise as possible without going into mathematical details and leaving out most proofs.
Publisher: Springer Science & Business Media
ISBN: 364297225X
Category : Business & Economics
Languages : en
Pages : 533
Book Description
The aim of this book is to give an up to date account of the most commonly uses statist i cal models for categoriCal data. The emphasis is on the connection between theory and appIications to real data sets. The book only covers models for categorical data. Various n:t0dels for mixed continuous and categorical data are thus excluded. The book is written as a textbook, although many methods and results are quite recent. This should imply, that the book can be used for a graduate course in categorical data analysis. With this aim in mind chapters 3 to 12 are concluded with a set of exer eises. In many cases, the data sets are those data sets, which were not included in the examples of the book, although they at one point in time were regarded as potential can didates for an example. A certain amount of general knowledge of statistical theory is necessary to fully benefit from the book. A summary of the basic statistical concepts deemed necessary pre requisites is given in chapter 2. The mathematical level is only moderately high, but the account in chapter 3 of basic properties of exponential families and the parametric multinomial distribution is made as mathematical preeise as possible without going into mathematical details and leaving out most proofs.
Statistical Analysis Quick Reference Guidebook
Author: Alan C. Elliott
Publisher: SAGE
ISBN: 9781412925600
Category : Computers
Languages : en
Pages : 280
Book Description
A practical `cut to the chase′ handbook that quickly explains the when, where, and how of statistical data analysis as it is used for real-world decision-making in a wide variety of disciplines. In this one-stop reference, the authors provide succinct guidelines for performing an analysis, avoiding pitfalls, interpreting results and reporting outcomes.
Publisher: SAGE
ISBN: 9781412925600
Category : Computers
Languages : en
Pages : 280
Book Description
A practical `cut to the chase′ handbook that quickly explains the when, where, and how of statistical data analysis as it is used for real-world decision-making in a wide variety of disciplines. In this one-stop reference, the authors provide succinct guidelines for performing an analysis, avoiding pitfalls, interpreting results and reporting outcomes.