Author: P.A.V.B. Swamy
Publisher: Springer
ISBN: 9783642806544
Category : Business & Economics
Languages : en
Pages : 210
Book Description
This short monograph which presents a unified treatment of the theory of estimating an economic relationship from a time series of cross-sections, is based on my Ph. D. dissertation submitted to the University of Wisconsin, Madison. To the material developed for that purpose, I have added the substance of two subsequent papers: "Efficient methods of estimating a regression equation with equi-correlated disturbances", and "The exact finite sample properties of estimators of coefficients in error components regression models" (with Arora) which form the basis for Chapters 11 and III respectively. One way of increasing the amount of statistical information is to assemble the cross-sections of successive years. To analyze such a body of data the traditional linear regression model is not appropriate and we have to introduce some additional complications and assumptions due to the hetero geneity of behavior among individuals. These complications have been discussed in this monograph. Limitations of economic data, particularly their non-experimental nature, do not permit us to know a priori the correct specification of a model. I have considered several different sets of assumptionR about the stability of coeffi cients and error variances across individuals and developed appropriate inference procedures. I have considered only those sets of assumptions which lead to opera tional procedures. Following the suggestions of Kuh, Klein and Zellner, I have adopted the linear regression models with some or all of their coefficients varying randomly across individuals.
Statistical Inference in Random Coefficient Regression Models
Author: P.A.V.B. Swamy
Publisher: Springer
ISBN: 9783642806544
Category : Business & Economics
Languages : en
Pages : 210
Book Description
This short monograph which presents a unified treatment of the theory of estimating an economic relationship from a time series of cross-sections, is based on my Ph. D. dissertation submitted to the University of Wisconsin, Madison. To the material developed for that purpose, I have added the substance of two subsequent papers: "Efficient methods of estimating a regression equation with equi-correlated disturbances", and "The exact finite sample properties of estimators of coefficients in error components regression models" (with Arora) which form the basis for Chapters 11 and III respectively. One way of increasing the amount of statistical information is to assemble the cross-sections of successive years. To analyze such a body of data the traditional linear regression model is not appropriate and we have to introduce some additional complications and assumptions due to the hetero geneity of behavior among individuals. These complications have been discussed in this monograph. Limitations of economic data, particularly their non-experimental nature, do not permit us to know a priori the correct specification of a model. I have considered several different sets of assumptionR about the stability of coeffi cients and error variances across individuals and developed appropriate inference procedures. I have considered only those sets of assumptions which lead to opera tional procedures. Following the suggestions of Kuh, Klein and Zellner, I have adopted the linear regression models with some or all of their coefficients varying randomly across individuals.
Publisher: Springer
ISBN: 9783642806544
Category : Business & Economics
Languages : en
Pages : 210
Book Description
This short monograph which presents a unified treatment of the theory of estimating an economic relationship from a time series of cross-sections, is based on my Ph. D. dissertation submitted to the University of Wisconsin, Madison. To the material developed for that purpose, I have added the substance of two subsequent papers: "Efficient methods of estimating a regression equation with equi-correlated disturbances", and "The exact finite sample properties of estimators of coefficients in error components regression models" (with Arora) which form the basis for Chapters 11 and III respectively. One way of increasing the amount of statistical information is to assemble the cross-sections of successive years. To analyze such a body of data the traditional linear regression model is not appropriate and we have to introduce some additional complications and assumptions due to the hetero geneity of behavior among individuals. These complications have been discussed in this monograph. Limitations of economic data, particularly their non-experimental nature, do not permit us to know a priori the correct specification of a model. I have considered several different sets of assumptionR about the stability of coeffi cients and error variances across individuals and developed appropriate inference procedures. I have considered only those sets of assumptions which lead to opera tional procedures. Following the suggestions of Kuh, Klein and Zellner, I have adopted the linear regression models with some or all of their coefficients varying randomly across individuals.
Statistical Inference in Random Coefficient Regression Models
Author: P.A.V.B. Swamy
Publisher: Springer Science & Business Media
ISBN: 3642806538
Category : Business & Economics
Languages : en
Pages : 219
Book Description
This short monograph which presents a unified treatment of the theory of estimating an economic relationship from a time series of cross-sections, is based on my Ph. D. dissertation submitted to the University of Wisconsin, Madison. To the material developed for that purpose, I have added the substance of two subsequent papers: "Efficient methods of estimating a regression equation with equi-correlated disturbances", and "The exact finite sample properties of estimators of coefficients in error components regression models" (with Arora) which form the basis for Chapters 11 and III respectively. One way of increasing the amount of statistical information is to assemble the cross-sections of successive years. To analyze such a body of data the traditional linear regression model is not appropriate and we have to introduce some additional complications and assumptions due to the hetero geneity of behavior among individuals. These complications have been discussed in this monograph. Limitations of economic data, particularly their non-experimental nature, do not permit us to know a priori the correct specification of a model. I have considered several different sets of assumptionR about the stability of coeffi cients and error variances across individuals and developed appropriate inference procedures. I have considered only those sets of assumptions which lead to opera tional procedures. Following the suggestions of Kuh, Klein and Zellner, I have adopted the linear regression models with some or all of their coefficients varying randomly across individuals.
Publisher: Springer Science & Business Media
ISBN: 3642806538
Category : Business & Economics
Languages : en
Pages : 219
Book Description
This short monograph which presents a unified treatment of the theory of estimating an economic relationship from a time series of cross-sections, is based on my Ph. D. dissertation submitted to the University of Wisconsin, Madison. To the material developed for that purpose, I have added the substance of two subsequent papers: "Efficient methods of estimating a regression equation with equi-correlated disturbances", and "The exact finite sample properties of estimators of coefficients in error components regression models" (with Arora) which form the basis for Chapters 11 and III respectively. One way of increasing the amount of statistical information is to assemble the cross-sections of successive years. To analyze such a body of data the traditional linear regression model is not appropriate and we have to introduce some additional complications and assumptions due to the hetero geneity of behavior among individuals. These complications have been discussed in this monograph. Limitations of economic data, particularly their non-experimental nature, do not permit us to know a priori the correct specification of a model. I have considered several different sets of assumptionR about the stability of coeffi cients and error variances across individuals and developed appropriate inference procedures. I have considered only those sets of assumptions which lead to opera tional procedures. Following the suggestions of Kuh, Klein and Zellner, I have adopted the linear regression models with some or all of their coefficients varying randomly across individuals.
Regression Analysis
Author: Richard A. Berk
Publisher: SAGE
ISBN: 9780761929048
Category : Mathematics
Languages : en
Pages : 286
Book Description
PLEASE UPDATE SAGE INDIA AND SAGE UK ADDRESSES ON IMPRINT PAGE.
Publisher: SAGE
ISBN: 9780761929048
Category : Mathematics
Languages : en
Pages : 286
Book Description
PLEASE UPDATE SAGE INDIA AND SAGE UK ADDRESSES ON IMPRINT PAGE.
Functional Relations, Random Coefficients, and Nonlinear Regression with Application to Kinetic Data
Author: S. Johansen
Publisher: Springer Science & Business Media
ISBN: 146125244X
Category : Mathematics
Languages : en
Pages : 135
Book Description
These notes on regression give an introduction to some of the techniques that I have found useful when working with various data sets in collaboration with Dr. S. Keiding (Copenhagen) and Dr. J.W.L. Robinson (Lausanne). The notes are based on some lectures given at the Institute of Mathematical Statistics, University of Copenhigen, 1978-81, for graduate students, and assumes a familiarity with statistical theory corresponding to the book by C.R. Rao: "Linear Statistical Inference and its Applications". Wiley, New York (1973) . The mathematical tools needed for the algebraic treatment of the models are some knowledge of finite dimensional vector spaces with an inner product and the notion of orthogonal projection. For the analytic treatment I need characteristic functions and weak convergence as the main tools. The most important statistical concepts are the general linear model for Gaussian variables and the general methods of maximum likelihood estimation as well as the likelihood ratio test. All these topics are presented in the above mentioned book by Rao and the reader is referred to that for details. For convenience a short appendix is added where the fundamental concepts from linear algebra are discussed.
Publisher: Springer Science & Business Media
ISBN: 146125244X
Category : Mathematics
Languages : en
Pages : 135
Book Description
These notes on regression give an introduction to some of the techniques that I have found useful when working with various data sets in collaboration with Dr. S. Keiding (Copenhagen) and Dr. J.W.L. Robinson (Lausanne). The notes are based on some lectures given at the Institute of Mathematical Statistics, University of Copenhigen, 1978-81, for graduate students, and assumes a familiarity with statistical theory corresponding to the book by C.R. Rao: "Linear Statistical Inference and its Applications". Wiley, New York (1973) . The mathematical tools needed for the algebraic treatment of the models are some knowledge of finite dimensional vector spaces with an inner product and the notion of orthogonal projection. For the analytic treatment I need characteristic functions and weak convergence as the main tools. The most important statistical concepts are the general linear model for Gaussian variables and the general methods of maximum likelihood estimation as well as the likelihood ratio test. All these topics are presented in the above mentioned book by Rao and the reader is referred to that for details. For convenience a short appendix is added where the fundamental concepts from linear algebra are discussed.
Macroeconometrics and Time Series Analysis
Author: Steven Durlauf
Publisher: Springer
ISBN: 0230280838
Category : Business & Economics
Languages : en
Pages : 417
Book Description
Specially selected from The New Palgrave Dictionary of Economics 2nd edition, each article within this compendium covers the fundamental themes within the discipline and is written by a leading practitioner in the field. A handy reference tool.
Publisher: Springer
ISBN: 0230280838
Category : Business & Economics
Languages : en
Pages : 417
Book Description
Specially selected from The New Palgrave Dictionary of Economics 2nd edition, each article within this compendium covers the fundamental themes within the discipline and is written by a leading practitioner in the field. A handy reference tool.
Econometrics
Author: John Eatwell
Publisher: W. W. Norton & Company
ISBN: 9780393958560
Category : Business & Economics
Languages : en
Pages : 306
Book Description
"First published in the New Palgrave: a dictionary of economics ... in four volumes, 1987"--T.p. verso. Includes bibliographical references.
Publisher: W. W. Norton & Company
ISBN: 9780393958560
Category : Business & Economics
Languages : en
Pages : 306
Book Description
"First published in the New Palgrave: a dictionary of economics ... in four volumes, 1987"--T.p. verso. Includes bibliographical references.
Statistical and Econometric Methods for Transportation Data Analysis
Author: Simon Washington
Publisher: CRC Press
ISBN: 0429534221
Category : Technology & Engineering
Languages : en
Pages : 470
Book Description
The book's website (with databases and other support materials) can be accessed here. Praise for the Second Edition: The second edition introduces an especially broad set of statistical methods ... As a lecturer in both transportation and marketing research, I find this book an excellent textbook for advanced undergraduate, Master’s and Ph.D. students, covering topics from simple descriptive statistics to complex Bayesian models. ... It is one of the few books that cover an extensive set of statistical methods needed for data analysis in transportation. The book offers a wealth of examples from the transportation field. —The American Statistician Statistical and Econometric Methods for Transportation Data Analysis, Third Edition offers an expansion over the first and second editions in response to the recent methodological advancements in the fields of econometrics and statistics and to provide an increasing range of examples and corresponding data sets. It describes and illustrates some of the statistical and econometric tools commonly used in transportation data analysis. It provides a wide breadth of examples and case studies, covering applications in various aspects of transportation planning, engineering, safety, and economics. Ample analytical rigor is provided in each chapter so that fundamental concepts and principles are clear and numerous references are provided for those seeking additional technical details and applications. New to the Third Edition Updated references and improved examples throughout. New sections on random parameters linear regression and ordered probability models including the hierarchical ordered probit model. A new section on random parameters models with heterogeneity in the means and variances of parameter estimates. Multiple new sections on correlated random parameters and correlated grouped random parameters in probit, logit and hazard-based models. A new section discussing the practical aspects of random parameters model estimation. A new chapter on Latent Class Models. A new chapter on Bivariate and Multivariate Dependent Variable Models. Statistical and Econometric Methods for Transportation Data Analysis, Third Edition can serve as a textbook for advanced undergraduate, Masters, and Ph.D. students in transportation-related disciplines including engineering, economics, urban and regional planning, and sociology. The book also serves as a technical reference for researchers and practitioners wishing to examine and understand a broad range of statistical and econometric tools required to study transportation problems.
Publisher: CRC Press
ISBN: 0429534221
Category : Technology & Engineering
Languages : en
Pages : 470
Book Description
The book's website (with databases and other support materials) can be accessed here. Praise for the Second Edition: The second edition introduces an especially broad set of statistical methods ... As a lecturer in both transportation and marketing research, I find this book an excellent textbook for advanced undergraduate, Master’s and Ph.D. students, covering topics from simple descriptive statistics to complex Bayesian models. ... It is one of the few books that cover an extensive set of statistical methods needed for data analysis in transportation. The book offers a wealth of examples from the transportation field. —The American Statistician Statistical and Econometric Methods for Transportation Data Analysis, Third Edition offers an expansion over the first and second editions in response to the recent methodological advancements in the fields of econometrics and statistics and to provide an increasing range of examples and corresponding data sets. It describes and illustrates some of the statistical and econometric tools commonly used in transportation data analysis. It provides a wide breadth of examples and case studies, covering applications in various aspects of transportation planning, engineering, safety, and economics. Ample analytical rigor is provided in each chapter so that fundamental concepts and principles are clear and numerous references are provided for those seeking additional technical details and applications. New to the Third Edition Updated references and improved examples throughout. New sections on random parameters linear regression and ordered probability models including the hierarchical ordered probit model. A new section on random parameters models with heterogeneity in the means and variances of parameter estimates. Multiple new sections on correlated random parameters and correlated grouped random parameters in probit, logit and hazard-based models. A new section discussing the practical aspects of random parameters model estimation. A new chapter on Latent Class Models. A new chapter on Bivariate and Multivariate Dependent Variable Models. Statistical and Econometric Methods for Transportation Data Analysis, Third Edition can serve as a textbook for advanced undergraduate, Masters, and Ph.D. students in transportation-related disciplines including engineering, economics, urban and regional planning, and sociology. The book also serves as a technical reference for researchers and practitioners wishing to examine and understand a broad range of statistical and econometric tools required to study transportation problems.
Small Area Estimation
Author: J. N. K. Rao
Publisher: John Wiley & Sons
ISBN: 1118735722
Category : Mathematics
Languages : en
Pages : 480
Book Description
Praise for the First Edition "This pioneering work, in which Rao provides a comprehensive and up-to-date treatment of small area estimation, will become a classic...I believe that it has the potential to turn small area estimation...into a larger area of importance to both researchers and practitioners." —Journal of the American Statistical Association Written by two experts in the field, Small Area Estimation, Second Edition provides a comprehensive and up-to-date account of the methods and theory of small area estimation (SAE), particularly indirect estimation based on explicit small area linking models. The model-based approach to small area estimation offers several advantages including increased precision, the derivation of "optimal" estimates and associated measures of variability under an assumed model, and the validation of models from the sample data. Emphasizing real data throughout, the Second Edition maintains a self-contained account of crucial theoretical and methodological developments in the field of SAE. The new edition provides extensive accounts of new and updated research, which often involves complex theory to handle model misspecifications and other complexities. Including information on survey design issues and traditional methods employing indirect estimates based on implicit linking models, Small Area Estimation, Second Edition also features: Additional sections describing the use of R code data sets for readers to use when replicating applications Numerous examples of SAE applications throughout each chapter, including recent applications in U.S. Federal programs New topical coverage on extended design issues, synthetic estimation, further refinements and solutions to the Fay-Herriot area level model, basic unit level models, and spatial and time series models A discussion of the advantages and limitations of various SAE methods for model selection from data as well as comparisons of estimates derived from models to reliable values obtained from external sources, such as previous census or administrative data Small Area Estimation, Second Edition is an excellent reference for practicing statisticians and survey methodologists as well as practitioners interested in learning SAE methods. The Second Edition is also an ideal textbook for graduate-level courses in SAE and reliable small area statistics.
Publisher: John Wiley & Sons
ISBN: 1118735722
Category : Mathematics
Languages : en
Pages : 480
Book Description
Praise for the First Edition "This pioneering work, in which Rao provides a comprehensive and up-to-date treatment of small area estimation, will become a classic...I believe that it has the potential to turn small area estimation...into a larger area of importance to both researchers and practitioners." —Journal of the American Statistical Association Written by two experts in the field, Small Area Estimation, Second Edition provides a comprehensive and up-to-date account of the methods and theory of small area estimation (SAE), particularly indirect estimation based on explicit small area linking models. The model-based approach to small area estimation offers several advantages including increased precision, the derivation of "optimal" estimates and associated measures of variability under an assumed model, and the validation of models from the sample data. Emphasizing real data throughout, the Second Edition maintains a self-contained account of crucial theoretical and methodological developments in the field of SAE. The new edition provides extensive accounts of new and updated research, which often involves complex theory to handle model misspecifications and other complexities. Including information on survey design issues and traditional methods employing indirect estimates based on implicit linking models, Small Area Estimation, Second Edition also features: Additional sections describing the use of R code data sets for readers to use when replicating applications Numerous examples of SAE applications throughout each chapter, including recent applications in U.S. Federal programs New topical coverage on extended design issues, synthetic estimation, further refinements and solutions to the Fay-Herriot area level model, basic unit level models, and spatial and time series models A discussion of the advantages and limitations of various SAE methods for model selection from data as well as comparisons of estimates derived from models to reliable values obtained from external sources, such as previous census or administrative data Small Area Estimation, Second Edition is an excellent reference for practicing statisticians and survey methodologists as well as practitioners interested in learning SAE methods. The Second Edition is also an ideal textbook for graduate-level courses in SAE and reliable small area statistics.
Modeling Ordered Choices
Author: William H. Greene
Publisher: Cambridge University Press
ISBN: 1139485954
Category : Business & Economics
Languages : en
Pages : 383
Book Description
It is increasingly common for analysts to seek out the opinions of individuals and organizations using attitudinal scales such as degree of satisfaction or importance attached to an issue. Examples include levels of obesity, seriousness of a health condition, attitudes towards service levels, opinions on products, voting intentions, and the degree of clarity of contracts. Ordered choice models provide a relevant methodology for capturing the sources of influence that explain the choice made amongst a set of ordered alternatives. The methods have evolved to a level of sophistication that can allow for heterogeneity in the threshold parameters, in the explanatory variables (through random parameters), and in the decomposition of the residual variance. This book brings together contributions in ordered choice modeling from a number of disciplines, synthesizing developments over the last fifty years, and suggests useful extensions to account for the wide range of sources of influence on choice.
Publisher: Cambridge University Press
ISBN: 1139485954
Category : Business & Economics
Languages : en
Pages : 383
Book Description
It is increasingly common for analysts to seek out the opinions of individuals and organizations using attitudinal scales such as degree of satisfaction or importance attached to an issue. Examples include levels of obesity, seriousness of a health condition, attitudes towards service levels, opinions on products, voting intentions, and the degree of clarity of contracts. Ordered choice models provide a relevant methodology for capturing the sources of influence that explain the choice made amongst a set of ordered alternatives. The methods have evolved to a level of sophistication that can allow for heterogeneity in the threshold parameters, in the explanatory variables (through random parameters), and in the decomposition of the residual variance. This book brings together contributions in ordered choice modeling from a number of disciplines, synthesizing developments over the last fifty years, and suggests useful extensions to account for the wide range of sources of influence on choice.
Introduction to Multiple Time Series Analysis
Author: Helmut Lütkepohl
Publisher: Springer Science & Business Media
ISBN: 3662026910
Category : Business & Economics
Languages : en
Pages : 556
Book Description
Publisher: Springer Science & Business Media
ISBN: 3662026910
Category : Business & Economics
Languages : en
Pages : 556
Book Description