Statistical Downscaling of Climate Model Outputs for Hydrological Extremes

Statistical Downscaling of Climate Model Outputs for Hydrological Extremes PDF Author: Kwok Pan Chun
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description

Statistical Downscaling of Climate Model Outputs for Hydrological Extremes

Statistical Downscaling of Climate Model Outputs for Hydrological Extremes PDF Author: Kwok Pan Chun
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Statistical Downscaling for Hydrological and Environmental Applications

Statistical Downscaling for Hydrological and Environmental Applications PDF Author: Taesam Lee
Publisher: CRC Press
ISBN: 0429861141
Category : Science
Languages : en
Pages : 195

Get Book Here

Book Description
Global climate change is typically understood and modeled using global climate models (GCMs), but the outputs of these models in terms of hydrological variables are only available on coarse or large spatial and time scales, while finer spatial and temporal resolutions are needed to reliably assess the hydro-environmental impacts of climate change. To reliably obtain the required resolutions of hydrological variables, statistical downscaling is typically employed. Statistical Downscaling for Hydrological and Environmental Applications presents statistical downscaling techniques in a practical manner so that both students and practitioners can readily utilize them. Numerous methods are presented, and all are illustrated with practical examples. The book is written so that no prior background in statistics is needed, and it will be useful to graduate students, college faculty, and researchers in hydrology, hydroclimatology, agricultural and environmental sciences, and watershed management. It will also be of interest to environmental policymakers at the local, state, and national levels, as well as readers interested in climate change and its related hydrologic impacts. Features: Examines how to model hydrological events such as extreme rainfall, floods, and droughts at the local, watershed level. Explains how to properly correct for significant biases with the observational data normally found in current Global Climate Models (GCMs). Presents temporal downscaling from daily to hourly with a nonparametric approach. Discusses the myriad effects of climate change on hydrological processes.

Empirical-statistical Downscaling

Empirical-statistical Downscaling PDF Author: Rasmus E. Benestad
Publisher: World Scientific
ISBN: 9812819126
Category : Science
Languages : en
Pages : 228

Get Book Here

Book Description
Empirical-statistical downscaling (ESD) is a method for estimating how local climatic variables are affected by large-scale climatic conditions. ESD has been applied to local climate/weather studies for years, but there are few ? if any ? textbooks on the subject. It is also anticipated that ESD will become more important and commonplace in the future, as anthropogenic global warming proceeds. Thus, a textbook on ESD will be important for next-generation climate scientists.

Statistical Downscaling and Bias Correction for Climate Research

Statistical Downscaling and Bias Correction for Climate Research PDF Author: Douglas Maraun
Publisher: Cambridge University Press
ISBN: 1107066050
Category : Mathematics
Languages : en
Pages : 365

Get Book Here

Book Description
A comprehensive and practical guide, providing technical background and user context for researchers, graduate students, practitioners and decision makers. This book presents the main approaches and describes their underlying assumptions, skill and limitations. Guidelines for the application of downscaling and the use of downscaled information in practice complete the volume.

Statistical Analysis and Stochastic Modelling of Hydrological Extremes

Statistical Analysis and Stochastic Modelling of Hydrological Extremes PDF Author: Hossein Tabari
Publisher: MDPI
ISBN: 3039216643
Category : Science
Languages : en
Pages : 294

Get Book Here

Book Description
Hydrological extremes have become a major concern because of their devastating consequences and their increased risk as a result of climate change and the growing concentration of people and infrastructure in high-risk zones. The analysis of hydrological extremes is challenging due to their rarity and small sample size, and the interconnections between different types of extremes and becomes further complicated by the untrustworthy representation of meso-scale processes involved in extreme events by coarse spatial and temporal scale models as well as biased or missing observations due to technical difficulties during extreme conditions. The complexity of analyzing hydrological extremes calls for robust statistical methods for the treatment of such events. This Special Issue is motivated by the need to apply and develop innovative stochastic and statistical approaches to analyze hydrological extremes under current and future climate conditions. The papers of this Special Issue focus on six topics associated with hydrological extremes: Historical changes in hydrological extremes; Projected changes in hydrological extremes; Downscaling of hydrological extremes; Early warning and forecasting systems for drought and flood; Interconnections of hydrological extremes; Applicability of satellite data for hydrological studies.

Downscaling Techniques for High-Resolution Climate Projections

Downscaling Techniques for High-Resolution Climate Projections PDF Author: Rao Kotamarthi
Publisher: Cambridge University Press
ISBN: 1108587062
Category : Science
Languages : en
Pages : 213

Get Book Here

Book Description
Downscaling is a widely used technique for translating information from large-scale climate models to the spatial and temporal scales needed to assess local and regional climate impacts, vulnerability, risk and resilience. This book is a comprehensive guide to the downscaling techniques used for climate data. A general introduction of the science of climate modeling is followed by a discussion of techniques, models and methodologies used for producing downscaled projections, and the advantages, disadvantages and uncertainties of each. The book provides detailed information on dynamic and statistical downscaling techniques in non-technical language, as well as recommendations for selecting suitable downscaled datasets for different applications. The use of downscaled climate data in national and international assessments is also discussed using global examples. This is a practical guide for graduate students and researchers working on climate impacts and adaptation, as well as for policy makers and practitioners interested in climate risk and resilience.

Watershed Scale Climate Change Projections for Use in Hydrologic Studies

Watershed Scale Climate Change Projections for Use in Hydrologic Studies PDF Author: Muhammad Zia ur Rahman Hashmi
Publisher:
ISBN:
Category : Bayesian statistical decision theory
Languages : en
Pages : 536

Get Book Here

Book Description
Global Circulation Models (GCMs) are considered the most reliable source to provide the necessary data for climate change studies. At present, there is a wide variety of GCMs, which can be used for future projections of climate change using different emission scenarios. However, for assessing the hydrological impacts of climate change at the watershed and the regional scale, the GCM outputs cannot be used directly due to the mismatch in the spatial resolution between the GCMs and hydrological models. In order to use the output of a GCM for conducting hydrological impact studies, downscaling is used to convert the coarse spatial resolution of the GCM output into a fine resolution. In broad terms, downscaling techniques can be classified as dynamical downscaling and statistical downscaling. Statistical downscaling approaches are further classified into three broad categories, namely: (1) weather typing; (2) weather generators; and (3) multiple regression-based. For the assessment of hydrologic impacts of climate change at the watershed scale, statistical downscaling is usually preferred over dynamical downscaling as station scale information required for such studies may not be directly obtained through dynamical downscaling. Among the variables commonly downscaled, precipitation downscaling is still quite challenging, which has been recognised by many recent studies. Moreover, statistical downscaling methods are usually considered to be not very effective for simulation of precipitation, especially extreme precipitation events. On the other hand, the frequency and intensity of extreme precipitation events are very likely to be impacted by envisaged climate change in most parts of the world, thus posing the risk of increased floods and droughts. In this situation, hydrologists should only rely on those statistical downscaling tools that are equally efficient for simulating mean precipitation as well as extreme precipitation events. There is a wide variety of statistical downscaling methods available under the three categories mentioned above, and each method has its strengths and weaknesses. Therefore, no single method has been developed which is considered universal for all kinds of conditions and all variables. In this situation there is a need for multi-model downscaling studies to produce probabilistic climate change projections rather than a point estimate of a projected change. In order to address some of the key issues in the field of statistical downscaling research, this thesis study includes the evaluation of two well established and popular downscaling models, i.e. the Statistical DownScaling Model (SDSM) and Long Ashton Research Station Weather Generator (LARS-WG), in terms of their ability to downscale precipitation, with its mean and extreme characteristics, for the Clutha River watershed in New Zealand. It also presents the development of a novel statistical downscaling tool using Gene Expression Programming (GEP) and compares its performance with the SDSM-a widely used tool of similar nature. The GEP downscaling model proves to be a simpler and more efficient solution for precipitation downscaling than the SDSM model. Also, a major part of this study comprises of an evaluation of all the three downscaling models i.e. the SDSM, the LARS-WG and the GEP, in terms of their ability to simulate and downscale the frequency of extreme precipitation events, by fitting a Generalised Extreme Value (GEV) distribution to the annual maximum data obtained from the three models. Out of the three models, the GEP model appears to be the least efficient in simulating the frequency of extreme precipitation events while the other two models show reasonable capability in this regard. Furthermore, the research conducted for this thesis explores the development of a novel probabilistic multi-model ensemble of the three downscaling models, involved in the thesis study, using a Bayesian statistical framework and presents probabilistic projections of precipitation change for the Clutha watershed. In this way, the thesis endeavoured to contribute in the ongoing research related to statistical downscaling by addressing some of the key modern day issues highlighted by other leading researchers.

Extreme Hydrology and Climate Variability

Extreme Hydrology and Climate Variability PDF Author: Assefa M. Melesse
Publisher: Elsevier
ISBN: 0128159995
Category : Science
Languages : en
Pages : 580

Get Book Here

Book Description
Extreme Hydrology and Climate Variability: Monitoring, Modelling, Adaptation and Mitigation is a compilation of contributions by experts from around the world who discuss extreme hydrology topics, from monitoring, to modeling and management. With extreme climatic and hydrologic events becoming so frequent, this book is a critical source, adding knowledge to the science of extreme hydrology. Topics covered include hydrometeorology monitoring, climate variability and trends, hydrological variability and trends, landscape dynamics, droughts, flood processes, and extreme events management, adaptation and mitigation. Each of the book's chapters provide background and theoretical foundations followed by approaches used and results of the applied studies. This book will be highly used by water resource managers and extreme event researchers who are interested in understanding the processes and teleconnectivity of large-scale climate dynamics and extreme events, predictability, simulation and intervention measures. Presents datasets used and methods followed to support the findings included, allowing readers to follow these steps in their own research Provides variable methodological approaches, thus giving the reader multiple hydrological modeling information to use in their work Includes a variety of case studies, thus making the context of the book relatable to everyday working situations for those studying extreme hydrology Discusses extreme event management, including adaption and mitigation

Empirical-statistical Downscaling

Empirical-statistical Downscaling PDF Author: Benestad Rasmus E
Publisher: World Scientific Publishing Company
ISBN: 9813107294
Category : Science
Languages : en
Pages : 228

Get Book Here

Book Description
Empirical-statistical downscaling (ESD) is a method for estimating how local climatic variables are affected by large-scale climatic conditions. ESD has been applied to local climate/weather studies for years, but there are few — if any — textbooks on the subject. It is also anticipated that ESD will become more important and commonplace in the future, as anthropogenic global warming proceeds. Thus, a textbook on ESD will be important for next-generation climate scientists.

Impacts of Climate Change on Rainfall Extremes and Urban Drainage Systems

Impacts of Climate Change on Rainfall Extremes and Urban Drainage Systems PDF Author: Patrick Willems
Publisher: IWA Publishing
ISBN: 1780401256
Category : Science
Languages : en
Pages : 239

Get Book Here

Book Description
Impacts of Climate Change on Rainfall Extremes and Urban Drainage Systems provides a state-of-the-art overview of existing methodologies and relevant results related to the assessment of the climate change impacts on urban rainfall extremes as well as on urban hydrology and hydraulics. This overview focuses mainly on several difficulties and limitations regarding the current methods and discusses various issues and challenges facing the research community in dealing with the climate change impact assessment and adaptation for urban drainage infrastructure design and management. Authors: Patrick Willems, University of Leuven, Hydraulics division; Jonas Olsson, Swedish Meteorological and Hydrological Institute; Karsten Arnbjerg-Nielsen, Technical University of Denmark, Department of Environmental Engineering; Simon Beecham, University of South Australia, School of Natural and Built Environments; Assela Pathirana, UNESCO-IHE Institute for Water Education; Ida Bulow Gregersen, Technical University of Denmark, Department of Environmental Engineering; Henrik Madsen, DHI Water & Environment, Water Resources Department; Van-Thanh-Van Nguyen, McGill University, Department of Civil Engineering and Applied Mechanics