Author: Joseph Ofungwu
Publisher: John Wiley & Sons
ISBN: 1118634519
Category : Social Science
Languages : en
Pages : 656
Book Description
Statistical Applications for Environmental Analysis and Risk Assessment guides readers through real-world situations and the best statistical methods used to determine the nature and extent of the problem, evaluate the potential human health and ecological risks, and design and implement remedial systems as necessary. Featuring numerous worked examples using actual data and “ready-made” software scripts, Statistical Applications for Environmental Analysis and Risk Assessment also includes: • Descriptions of basic statistical concepts and principles in an informal style that does not presume prior familiarity with the subject • Detailed illustrations of statistical applications in the environmental and related water resources fields using real-world data in the contexts that would typically be encountered by practitioners • Software scripts using the high-powered statistical software system, R, and supplemented by USEPA’s ProUCL and USDOE’s VSP software packages, which are all freely available • Coverage of frequent data sample issues such as non-detects, outliers, skewness, sustained and cyclical trend that habitually plague environmental data samples • Clear demonstrations of the crucial, but often overlooked, role of statistics in environmental sampling design and subsequent exposure risk assessment.
Statistical Applications for Environmental Analysis and Risk Assessment
Author: Joseph Ofungwu
Publisher: John Wiley & Sons
ISBN: 1118634519
Category : Social Science
Languages : en
Pages : 656
Book Description
Statistical Applications for Environmental Analysis and Risk Assessment guides readers through real-world situations and the best statistical methods used to determine the nature and extent of the problem, evaluate the potential human health and ecological risks, and design and implement remedial systems as necessary. Featuring numerous worked examples using actual data and “ready-made” software scripts, Statistical Applications for Environmental Analysis and Risk Assessment also includes: • Descriptions of basic statistical concepts and principles in an informal style that does not presume prior familiarity with the subject • Detailed illustrations of statistical applications in the environmental and related water resources fields using real-world data in the contexts that would typically be encountered by practitioners • Software scripts using the high-powered statistical software system, R, and supplemented by USEPA’s ProUCL and USDOE’s VSP software packages, which are all freely available • Coverage of frequent data sample issues such as non-detects, outliers, skewness, sustained and cyclical trend that habitually plague environmental data samples • Clear demonstrations of the crucial, but often overlooked, role of statistics in environmental sampling design and subsequent exposure risk assessment.
Publisher: John Wiley & Sons
ISBN: 1118634519
Category : Social Science
Languages : en
Pages : 656
Book Description
Statistical Applications for Environmental Analysis and Risk Assessment guides readers through real-world situations and the best statistical methods used to determine the nature and extent of the problem, evaluate the potential human health and ecological risks, and design and implement remedial systems as necessary. Featuring numerous worked examples using actual data and “ready-made” software scripts, Statistical Applications for Environmental Analysis and Risk Assessment also includes: • Descriptions of basic statistical concepts and principles in an informal style that does not presume prior familiarity with the subject • Detailed illustrations of statistical applications in the environmental and related water resources fields using real-world data in the contexts that would typically be encountered by practitioners • Software scripts using the high-powered statistical software system, R, and supplemented by USEPA’s ProUCL and USDOE’s VSP software packages, which are all freely available • Coverage of frequent data sample issues such as non-detects, outliers, skewness, sustained and cyclical trend that habitually plague environmental data samples • Clear demonstrations of the crucial, but often overlooked, role of statistics in environmental sampling design and subsequent exposure risk assessment.
Statistics and the Evaluation of Evidence for Forensic Scientists
Author: Colin Aitken
Publisher: John Wiley & Sons
ISBN: 1119245222
Category : Mathematics
Languages : en
Pages : 1251
Book Description
Statistics and the Evaluation of Evidence for Forensic Scientists The leading resource in the statistical evaluation and interpretation of forensic evidence The third edition of Statistics and the Evaluation of Evidence for Forensic Scientists is fully updated to provide the latest research and developments in the use of statistical techniques to evaluate and interpret evidence. Courts are increasingly aware of the importance of proper evidence assessment when there is an element of uncertainty. Because of the increasing availability of data, the role of statistical and probabilistic reasoning is gaining a higher profile in criminal cases. That’s why lawyers, forensic scientists, graduate students, and researchers will find this book an essential resource, one which explores how forensic evidence can be evaluated and interpreted statistically. It’s written as an accessible source of information for all those with an interest in the evaluation and interpretation of forensic scientific evidence. Discusses the entire chain of reasoning–from evidence pre-assessment to court presentation; Includes material for the understanding of evidence interpretation for single and multiple trace evidence; Provides real examples and data for improved understanding. Since the first edition of this book was published in 1995, this respected series has remained a leading resource in the statistical evaluation of forensic evidence. It shares knowledge from authors in the fields of statistics and forensic science who are international experts in the area of evidence evaluation and interpretation. This book helps people to deal with uncertainty related to scientific evidence and propositions. It introduces a method of reasoning that shows how to update beliefs coherently and to act rationally. In this edition, readers can find new information on the topics of elicitation, subjective probabilities, decision analysis, and cognitive bias, all discussed in a Bayesian framework.
Publisher: John Wiley & Sons
ISBN: 1119245222
Category : Mathematics
Languages : en
Pages : 1251
Book Description
Statistics and the Evaluation of Evidence for Forensic Scientists The leading resource in the statistical evaluation and interpretation of forensic evidence The third edition of Statistics and the Evaluation of Evidence for Forensic Scientists is fully updated to provide the latest research and developments in the use of statistical techniques to evaluate and interpret evidence. Courts are increasingly aware of the importance of proper evidence assessment when there is an element of uncertainty. Because of the increasing availability of data, the role of statistical and probabilistic reasoning is gaining a higher profile in criminal cases. That’s why lawyers, forensic scientists, graduate students, and researchers will find this book an essential resource, one which explores how forensic evidence can be evaluated and interpreted statistically. It’s written as an accessible source of information for all those with an interest in the evaluation and interpretation of forensic scientific evidence. Discusses the entire chain of reasoning–from evidence pre-assessment to court presentation; Includes material for the understanding of evidence interpretation for single and multiple trace evidence; Provides real examples and data for improved understanding. Since the first edition of this book was published in 1995, this respected series has remained a leading resource in the statistical evaluation of forensic evidence. It shares knowledge from authors in the fields of statistics and forensic science who are international experts in the area of evidence evaluation and interpretation. This book helps people to deal with uncertainty related to scientific evidence and propositions. It introduces a method of reasoning that shows how to update beliefs coherently and to act rationally. In this edition, readers can find new information on the topics of elicitation, subjective probabilities, decision analysis, and cognitive bias, all discussed in a Bayesian framework.
Network Meta-Analysis for Decision-Making
Author: Sofia Dias
Publisher: John Wiley & Sons
ISBN: 1118647505
Category : Mathematics
Languages : en
Pages : 484
Book Description
A practical guide to network meta-analysis with examples and code In the evaluation of healthcare, rigorous methods of quantitative assessment are necessary to establish which interventions are effective and cost-effective. Often a single study will not provide the answers and it is desirable to synthesise evidence from multiple sources, usually randomised controlled trials. This book takes an approach to evidence synthesis that is specifically intended for decision making when there are two or more treatment alternatives being evaluated, and assumes that the purpose of every synthesis is to answer the question "for this pre-identified population of patients, which treatment is 'best'?" A comprehensive, coherent framework for network meta-analysis (mixed treatment comparisons) is adopted and estimated using Bayesian Markov Chain Monte Carlo methods implemented in the freely available software WinBUGS. Each chapter contains worked examples, exercises, solutions and code that may be adapted by readers to apply to their own analyses. This book can be used as an introduction to evidence synthesis and network meta-analysis, its key properties and policy implications. Examples and advanced methods are also presented for the more experienced reader. Methods used throughout this book can be applied consistently: model critique and checking for evidence consistency are emphasised. Methods are based on technical support documents produced for NICE Decision Support Unit, which support the NICE Methods of Technology Appraisal. Code presented is also the basis for the code used by the ISPOR Task Force on Indirect Comparisons. Includes extensive carefully worked examples, with thorough explanations of how to set out data for use in WinBUGS and how to interpret the output. Network Meta-Analysis for Decision Making will be of interest to decision makers, medical statisticians, health economists, and anyone involved in Health Technology Assessment including the pharmaceutical industry.
Publisher: John Wiley & Sons
ISBN: 1118647505
Category : Mathematics
Languages : en
Pages : 484
Book Description
A practical guide to network meta-analysis with examples and code In the evaluation of healthcare, rigorous methods of quantitative assessment are necessary to establish which interventions are effective and cost-effective. Often a single study will not provide the answers and it is desirable to synthesise evidence from multiple sources, usually randomised controlled trials. This book takes an approach to evidence synthesis that is specifically intended for decision making when there are two or more treatment alternatives being evaluated, and assumes that the purpose of every synthesis is to answer the question "for this pre-identified population of patients, which treatment is 'best'?" A comprehensive, coherent framework for network meta-analysis (mixed treatment comparisons) is adopted and estimated using Bayesian Markov Chain Monte Carlo methods implemented in the freely available software WinBUGS. Each chapter contains worked examples, exercises, solutions and code that may be adapted by readers to apply to their own analyses. This book can be used as an introduction to evidence synthesis and network meta-analysis, its key properties and policy implications. Examples and advanced methods are also presented for the more experienced reader. Methods used throughout this book can be applied consistently: model critique and checking for evidence consistency are emphasised. Methods are based on technical support documents produced for NICE Decision Support Unit, which support the NICE Methods of Technology Appraisal. Code presented is also the basis for the code used by the ISPOR Task Force on Indirect Comparisons. Includes extensive carefully worked examples, with thorough explanations of how to set out data for use in WinBUGS and how to interpret the output. Network Meta-Analysis for Decision Making will be of interest to decision makers, medical statisticians, health economists, and anyone involved in Health Technology Assessment including the pharmaceutical industry.
Excel 2019 for Environmental Sciences Statistics
Author: Thomas J. Quirk
Publisher: Springer Nature
ISBN: 3030662772
Category : Mathematics
Languages : en
Pages : 260
Book Description
This book shows the capabilities of Microsoft Excel in teaching environmental science statistics effectively. Similar to the previously published Excel 2016 for Environmental Sciences Statistics, this book is a step-by-step, exercise-driven guide for students and practitioners who need to master Excel to solve practical environmental science problems. If understanding statistics isn’t the reader’s strongest suit, the reader is not mathematically inclined, or if the reader is new to computers or to Excel, this is the book to start off with. Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in environmental science courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. Excel 2019 for Environmental Sciences Statistics: A Guide to Solving Practical Problems capitalizes on these improvements by teaching students and managers how to apply Excel to statistical techniques necessary in their courses and work. In this new edition, each chapter explains statistical formulas and directs the reader to use Excel commands to solve specific, easy-to-understand environmental science problems. Practice problems are provided at the end of each chapter with their solutions in an appendix. Separately, there is a full practice test (with answers in an appendix) that allows readers to test what they have learned.
Publisher: Springer Nature
ISBN: 3030662772
Category : Mathematics
Languages : en
Pages : 260
Book Description
This book shows the capabilities of Microsoft Excel in teaching environmental science statistics effectively. Similar to the previously published Excel 2016 for Environmental Sciences Statistics, this book is a step-by-step, exercise-driven guide for students and practitioners who need to master Excel to solve practical environmental science problems. If understanding statistics isn’t the reader’s strongest suit, the reader is not mathematically inclined, or if the reader is new to computers or to Excel, this is the book to start off with. Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in environmental science courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. Excel 2019 for Environmental Sciences Statistics: A Guide to Solving Practical Problems capitalizes on these improvements by teaching students and managers how to apply Excel to statistical techniques necessary in their courses and work. In this new edition, each chapter explains statistical formulas and directs the reader to use Excel commands to solve specific, easy-to-understand environmental science problems. Practice problems are provided at the end of each chapter with their solutions in an appendix. Separately, there is a full practice test (with answers in an appendix) that allows readers to test what they have learned.
Applied Missing Data Analysis in the Health Sciences
Author: Xiao-Hua Zhou
Publisher: John Wiley & Sons
ISBN: 1118573641
Category : Medical
Languages : en
Pages : 260
Book Description
Applied Missing Data Analysis in the Health Sciences A modern and practical guide to the essential concepts and ideas for analyzing data with missing observations in the field of biostatistics With an emphasis on hands-on applications, Applied Missing Data Analysis in the Health Sciences outlines the various statistical methods for the analysis of missing data. The authors acknowledge the limitations of established techniques and provide newly-developed methods with concrete applications in areas such as causal inference. Organized by types of data, chapter coverage begins with an overall introduction to the existence and limitations of missing data and continues into techniques for missing data inference, including likelihood-based, weighted GEE, multiple imputation, and Bayesian methods. The book subsequently covers cross-sectional, longitudinal, hierarchical, survival data. In addition, Applied Missing Data Analysis in the Health Sciences features: Multiple data sets that can be replicated using SAS®, Stata®, R, and WinBUGS software packages Numerous examples of case studies to illustrate real-world scenarios and demonstrate applications of discussed methodologies Detailed appendices to guide readers through the use of the presented data in various software environments Applied Missing Data Analysis in the Health Sciences is an excellent textbook for upper-undergraduate and graduate-level biostatistics courses as well as an ideal resource for health science researchers and applied statisticians.
Publisher: John Wiley & Sons
ISBN: 1118573641
Category : Medical
Languages : en
Pages : 260
Book Description
Applied Missing Data Analysis in the Health Sciences A modern and practical guide to the essential concepts and ideas for analyzing data with missing observations in the field of biostatistics With an emphasis on hands-on applications, Applied Missing Data Analysis in the Health Sciences outlines the various statistical methods for the analysis of missing data. The authors acknowledge the limitations of established techniques and provide newly-developed methods with concrete applications in areas such as causal inference. Organized by types of data, chapter coverage begins with an overall introduction to the existence and limitations of missing data and continues into techniques for missing data inference, including likelihood-based, weighted GEE, multiple imputation, and Bayesian methods. The book subsequently covers cross-sectional, longitudinal, hierarchical, survival data. In addition, Applied Missing Data Analysis in the Health Sciences features: Multiple data sets that can be replicated using SAS®, Stata®, R, and WinBUGS software packages Numerous examples of case studies to illustrate real-world scenarios and demonstrate applications of discussed methodologies Detailed appendices to guide readers through the use of the presented data in various software environments Applied Missing Data Analysis in the Health Sciences is an excellent textbook for upper-undergraduate and graduate-level biostatistics courses as well as an ideal resource for health science researchers and applied statisticians.
Individual Participant Data Meta-Analysis
Author: Richard D. Riley
Publisher: John Wiley & Sons
ISBN: 1119333725
Category : Medical
Languages : en
Pages : 38
Book Description
Individual Participant Data Meta-Analysis: A Handbook for Healthcare Research provides a comprehensive introduction to the fundamental principles and methods that healthcare researchers need when considering, conducting or using individual participant data (IPD) meta-analysis projects. Written and edited by researchers with substantial experience in the field, the book details key concepts and practical guidance for each stage of an IPD meta-analysis project, alongside illustrated examples and summary learning points. Split into five parts, the book chapters take the reader through the journey from initiating and planning IPD projects to obtaining, checking, and meta-analysing IPD, and appraising and reporting findings. The book initially focuses on the synthesis of IPD from randomised trials to evaluate treatment effects, including the evaluation of participant-level effect modifiers (treatment-covariate interactions). Detailed extension is then made to specialist topics such as diagnostic test accuracy, prognostic factors, risk prediction models, and advanced statistical topics such as multivariate and network meta-analysis, power calculations, and missing data. Intended for a broad audience, the book will enable the reader to: Understand the advantages of the IPD approach and decide when it is needed over a conventional systematic review Recognise the scope, resources and challenges of IPD meta-analysis projects Appreciate the importance of a multi-disciplinary project team and close collaboration with the original study investigators Understand how to obtain, check, manage and harmonise IPD from multiple studies Examine risk of bias (quality) of IPD and minimise potential biases throughout the project Understand fundamental statistical methods for IPD meta-analysis, including two-stage and one-stage approaches (and their differences), and statistical software to implement them Clearly report and disseminate IPD meta-analyses to inform policy, practice and future research Critically appraise existing IPD meta-analysis projects Address specialist topics such as effect modification, multiple correlated outcomes, multiple treatment comparisons, non-linear relationships, test accuracy at multiple thresholds, multiple imputation, and developing and validating clinical prediction models Detailed examples and case studies are provided throughout.
Publisher: John Wiley & Sons
ISBN: 1119333725
Category : Medical
Languages : en
Pages : 38
Book Description
Individual Participant Data Meta-Analysis: A Handbook for Healthcare Research provides a comprehensive introduction to the fundamental principles and methods that healthcare researchers need when considering, conducting or using individual participant data (IPD) meta-analysis projects. Written and edited by researchers with substantial experience in the field, the book details key concepts and practical guidance for each stage of an IPD meta-analysis project, alongside illustrated examples and summary learning points. Split into five parts, the book chapters take the reader through the journey from initiating and planning IPD projects to obtaining, checking, and meta-analysing IPD, and appraising and reporting findings. The book initially focuses on the synthesis of IPD from randomised trials to evaluate treatment effects, including the evaluation of participant-level effect modifiers (treatment-covariate interactions). Detailed extension is then made to specialist topics such as diagnostic test accuracy, prognostic factors, risk prediction models, and advanced statistical topics such as multivariate and network meta-analysis, power calculations, and missing data. Intended for a broad audience, the book will enable the reader to: Understand the advantages of the IPD approach and decide when it is needed over a conventional systematic review Recognise the scope, resources and challenges of IPD meta-analysis projects Appreciate the importance of a multi-disciplinary project team and close collaboration with the original study investigators Understand how to obtain, check, manage and harmonise IPD from multiple studies Examine risk of bias (quality) of IPD and minimise potential biases throughout the project Understand fundamental statistical methods for IPD meta-analysis, including two-stage and one-stage approaches (and their differences), and statistical software to implement them Clearly report and disseminate IPD meta-analyses to inform policy, practice and future research Critically appraise existing IPD meta-analysis projects Address specialist topics such as effect modification, multiple correlated outcomes, multiple treatment comparisons, non-linear relationships, test accuracy at multiple thresholds, multiple imputation, and developing and validating clinical prediction models Detailed examples and case studies are provided throughout.
Crossover Designs
Author: Kung-Jong Lui
Publisher: John Wiley & Sons
ISBN: 1119114691
Category : Medical
Languages : en
Pages : 248
Book Description
A comprehensive and practical resource for analyses of crossover designs For ethical reasons, it is vital to keep the number of patients in a clinical trial as low as possible. As evidenced by extensive research publications, crossover design can be a useful and powerful tool to reduce the number of patients needed for a parallel group design in studying treatments for non-curable chronic diseases. This book introduces commonly-used and well-established statistical tests and estimators in epidemiology that can easily be applied to hypothesis testing and estimation of the relative treatment effect for various types of data scale in crossover designs. Models with distribution-free random effects are assumed and hence most approaches considered here are semi-parametric. The book provides clinicians and biostatisticians with the exact test procedures and exact interval estimators, which are applicable even when the number of patients in a crossover trial is small. Systematic discussion on sample size determination is also included, which will be a valuable resource for researchers involved in crossover trial design. Key features: Provides exact test procedures and interval estimators, which are especially of use in small-sample cases. Presents most test procedures and interval estimators in closed-forms, enabling readers to calculate them by use of a pocket calculator or commonly-used statistical packages. Each chapter is self-contained, allowing the book to be used a reference resource. Uses real-life examples to illustrate the practical use of test procedures and estimators Provides extensive exercises to help readers appreciate the underlying theory, learn other relevant test procedures and understand how to calculate the required sample size. Crossover Designs: Testing, Estimation and Sample Size will be a useful resource for researchers from biostatistics, as well as pharmaceutical and clinical sciences. It can also be used as a textbook or reference for graduate students studying clinical experiments.
Publisher: John Wiley & Sons
ISBN: 1119114691
Category : Medical
Languages : en
Pages : 248
Book Description
A comprehensive and practical resource for analyses of crossover designs For ethical reasons, it is vital to keep the number of patients in a clinical trial as low as possible. As evidenced by extensive research publications, crossover design can be a useful and powerful tool to reduce the number of patients needed for a parallel group design in studying treatments for non-curable chronic diseases. This book introduces commonly-used and well-established statistical tests and estimators in epidemiology that can easily be applied to hypothesis testing and estimation of the relative treatment effect for various types of data scale in crossover designs. Models with distribution-free random effects are assumed and hence most approaches considered here are semi-parametric. The book provides clinicians and biostatisticians with the exact test procedures and exact interval estimators, which are applicable even when the number of patients in a crossover trial is small. Systematic discussion on sample size determination is also included, which will be a valuable resource for researchers involved in crossover trial design. Key features: Provides exact test procedures and interval estimators, which are especially of use in small-sample cases. Presents most test procedures and interval estimators in closed-forms, enabling readers to calculate them by use of a pocket calculator or commonly-used statistical packages. Each chapter is self-contained, allowing the book to be used a reference resource. Uses real-life examples to illustrate the practical use of test procedures and estimators Provides extensive exercises to help readers appreciate the underlying theory, learn other relevant test procedures and understand how to calculate the required sample size. Crossover Designs: Testing, Estimation and Sample Size will be a useful resource for researchers from biostatistics, as well as pharmaceutical and clinical sciences. It can also be used as a textbook or reference for graduate students studying clinical experiments.
Quantitative Finance
Author: Maria Cristina Mariani
Publisher: John Wiley & Sons
ISBN: 1118629965
Category : Business & Economics
Languages : en
Pages : 494
Book Description
Presents a multitude of topics relevant to the quantitative finance community by combining the best of the theory with the usefulness of applications Written by accomplished teachers and researchers in the field, this book presents quantitative finance theory through applications to specific practical problems and comes with accompanying coding techniques in R and MATLAB, and some generic pseudo-algorithms to modern finance. It also offers over 300 examples and exercises that are appropriate for the beginning student as well as the practitioner in the field. The Quantitative Finance book is divided into four parts. Part One begins by providing readers with the theoretical backdrop needed from probability and stochastic processes. We also present some useful finance concepts used throughout the book. In part two of the book we present the classical Black-Scholes-Merton model in a uniquely accessible and understandable way. Implied volatility as well as local volatility surfaces are also discussed. Next, solutions to Partial Differential Equations (PDE), wavelets and Fourier transforms are presented. Several methodologies for pricing options namely, tree methods, finite difference method and Monte Carlo simulation methods are also discussed. We conclude this part with a discussion on stochastic differential equations (SDE’s). In the third part of this book, several new and advanced models from current literature such as general Lvy processes, nonlinear PDE's for stochastic volatility models in a transaction fee market, PDE's in a jump-diffusion with stochastic volatility models and factor and copulas models are discussed. In part four of the book, we conclude with a solid presentation of the typical topics in fixed income securities and derivatives. We discuss models for pricing bonds market, marketable securities, credit default swaps (CDS) and securitizations. Classroom-tested over a three-year period with the input of students and experienced practitioners Emphasizes the volatility of financial analyses and interpretations Weaves theory with application throughout the book Utilizes R and MATLAB software programs Presents pseudo-algorithms for readers who do not have access to any particular programming system Supplemented with extensive author-maintained web site that includes helpful teaching hints, data sets, software programs, and additional content Quantitative Finance is an ideal textbook for upper-undergraduate and beginning graduate students in statistics, financial engineering, quantitative finance, and mathematical finance programs. It will also appeal to practitioners in the same fields.
Publisher: John Wiley & Sons
ISBN: 1118629965
Category : Business & Economics
Languages : en
Pages : 494
Book Description
Presents a multitude of topics relevant to the quantitative finance community by combining the best of the theory with the usefulness of applications Written by accomplished teachers and researchers in the field, this book presents quantitative finance theory through applications to specific practical problems and comes with accompanying coding techniques in R and MATLAB, and some generic pseudo-algorithms to modern finance. It also offers over 300 examples and exercises that are appropriate for the beginning student as well as the practitioner in the field. The Quantitative Finance book is divided into four parts. Part One begins by providing readers with the theoretical backdrop needed from probability and stochastic processes. We also present some useful finance concepts used throughout the book. In part two of the book we present the classical Black-Scholes-Merton model in a uniquely accessible and understandable way. Implied volatility as well as local volatility surfaces are also discussed. Next, solutions to Partial Differential Equations (PDE), wavelets and Fourier transforms are presented. Several methodologies for pricing options namely, tree methods, finite difference method and Monte Carlo simulation methods are also discussed. We conclude this part with a discussion on stochastic differential equations (SDE’s). In the third part of this book, several new and advanced models from current literature such as general Lvy processes, nonlinear PDE's for stochastic volatility models in a transaction fee market, PDE's in a jump-diffusion with stochastic volatility models and factor and copulas models are discussed. In part four of the book, we conclude with a solid presentation of the typical topics in fixed income securities and derivatives. We discuss models for pricing bonds market, marketable securities, credit default swaps (CDS) and securitizations. Classroom-tested over a three-year period with the input of students and experienced practitioners Emphasizes the volatility of financial analyses and interpretations Weaves theory with application throughout the book Utilizes R and MATLAB software programs Presents pseudo-algorithms for readers who do not have access to any particular programming system Supplemented with extensive author-maintained web site that includes helpful teaching hints, data sets, software programs, and additional content Quantitative Finance is an ideal textbook for upper-undergraduate and beginning graduate students in statistics, financial engineering, quantitative finance, and mathematical finance programs. It will also appeal to practitioners in the same fields.
Excel 2016 for Environmental Sciences Statistics
Author: Thomas J. Quirk
Publisher: Springer
ISBN: 3319400576
Category : Mathematics
Languages : en
Pages : 267
Book Description
This book shows the capabilities of Microsoft Excel in teaching environmental science statistics effectively. Similar to the previously published Excel 2013 for Environmental Sciences Statistics, this book is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical environmental science problems. If understanding statistics isn’t the reader’s strongest suit, the reader is not mathematically inclined, or if the reader is new to computers or to Excel, this is the book to start off with. Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in environmental science courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2016 for Environmental Sciences Statistics: A Guide to Solving Practical Problems capitalizes on these improvements by teaching students and managers how to apply Excel to statistical techniques necessary in their courses and work. Each chapter explains statistical formulas and directs the reader to use Excel commands to solve specific, easy-to-understand environmental science problems. Practice problems are provided at the end of each chapter with their solutions in an appendix. Separately, there is a full Practice Test (with answers in an Appendix) that allows readers to test what they have learned.
Publisher: Springer
ISBN: 3319400576
Category : Mathematics
Languages : en
Pages : 267
Book Description
This book shows the capabilities of Microsoft Excel in teaching environmental science statistics effectively. Similar to the previously published Excel 2013 for Environmental Sciences Statistics, this book is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical environmental science problems. If understanding statistics isn’t the reader’s strongest suit, the reader is not mathematically inclined, or if the reader is new to computers or to Excel, this is the book to start off with. Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in environmental science courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2016 for Environmental Sciences Statistics: A Guide to Solving Practical Problems capitalizes on these improvements by teaching students and managers how to apply Excel to statistical techniques necessary in their courses and work. Each chapter explains statistical formulas and directs the reader to use Excel commands to solve specific, easy-to-understand environmental science problems. Practice problems are provided at the end of each chapter with their solutions in an appendix. Separately, there is a full Practice Test (with answers in an Appendix) that allows readers to test what they have learned.
Environmental Data Analysis
Author: Zhihua Zhang
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110424908
Category : Mathematics
Languages : en
Pages : 334
Book Description
Most environmental data involve a large degree of complexity and uncertainty. Environmental Data Analysis is created to provide modern quantitative tools and techniques designed specifically to meet the needs of environmental sciences and related fields. This book has an impressive coverage of the scope. Main techniques described in this book are models for linear and nonlinear environmental systems, statistical & numerical methods, data envelopment analysis, risk assessments and life cycle assessments. These state-of-the-art techniques have attracted significant attention over the past decades in environmental monitoring, modeling and decision making. Environmental Data Analysis explains carefully various data analysis procedures and techniques in a clear, concise, and straightforward language and is written in a self-contained way that is accessible to researchers and advanced students in science and engineering. This is an excellent reference for scientists and engineers who wish to analyze, interpret and model data from various sources, and is also an ideal graduate-level textbook for courses in environmental sciences and related fields. Contents: Preface Time series analysis Chaos and dynamical systems Approximation Interpolation Statistical methods Numerical methods Optimization Data envelopment analysis Risk assessments Life cycle assessments Index
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110424908
Category : Mathematics
Languages : en
Pages : 334
Book Description
Most environmental data involve a large degree of complexity and uncertainty. Environmental Data Analysis is created to provide modern quantitative tools and techniques designed specifically to meet the needs of environmental sciences and related fields. This book has an impressive coverage of the scope. Main techniques described in this book are models for linear and nonlinear environmental systems, statistical & numerical methods, data envelopment analysis, risk assessments and life cycle assessments. These state-of-the-art techniques have attracted significant attention over the past decades in environmental monitoring, modeling and decision making. Environmental Data Analysis explains carefully various data analysis procedures and techniques in a clear, concise, and straightforward language and is written in a self-contained way that is accessible to researchers and advanced students in science and engineering. This is an excellent reference for scientists and engineers who wish to analyze, interpret and model data from various sources, and is also an ideal graduate-level textbook for courses in environmental sciences and related fields. Contents: Preface Time series analysis Chaos and dynamical systems Approximation Interpolation Statistical methods Numerical methods Optimization Data envelopment analysis Risk assessments Life cycle assessments Index