Statistical and Probabilistic Methods in Actuarial Science

Statistical and Probabilistic Methods in Actuarial Science PDF Author: Philip J. Boland
Publisher: CRC Press
ISBN: 158488696X
Category : Business & Economics
Languages : en
Pages : 368

Get Book Here

Book Description
Statistical and Probabilistic Methods in Actuarial Science covers many of the diverse methods in applied probability and statistics for students aspiring to careers in insurance, actuarial science, and finance. The book builds on students' existing knowledge of probability and statistics by establishing a solid and thorough understanding of

Statistical and Probabilistic Methods in Actuarial Science

Statistical and Probabilistic Methods in Actuarial Science PDF Author: Philip J. Boland
Publisher: CRC Press
ISBN: 158488696X
Category : Business & Economics
Languages : en
Pages : 368

Get Book Here

Book Description
Statistical and Probabilistic Methods in Actuarial Science covers many of the diverse methods in applied probability and statistics for students aspiring to careers in insurance, actuarial science, and finance. The book builds on students' existing knowledge of probability and statistics by establishing a solid and thorough understanding of

Statistical and Probabilistic Methods in Actuarial Science

Statistical and Probabilistic Methods in Actuarial Science PDF Author: Philip J. Boland
Publisher: CRC Press
ISBN: 1584886951
Category : Mathematics
Languages : en
Pages : 369

Get Book Here

Book Description
Statistical and Probabilistic Methods in Actuarial Science covers many of the diverse methods in applied probability and statistics for students aspiring to careers in insurance, actuarial science, and finance. The book builds on students’ existing knowledge of probability and statistics by establishing a solid and thorough understanding of these methods. It also emphasizes the wide variety of practical situations in insurance and actuarial science where these techniques may be used. Although some chapters are linked, several can be studied independently from the others. The first chapter introduces claims reserving via the deterministic chain ladder technique. The next few chapters survey loss distributions, risk models in a fixed period of time, and surplus processes, followed by an examination of credibility theory in which collateral and sample information are brought together to provide reasonable methods of estimation. In the subsequent chapter, experience rating via no claim discount schemes for motor insurance provides an interesting application of Markov chain methods. The final chapters discuss generalized linear models and decision and game theory. Developed by an author with many years of teaching experience, this text presents an accessible, sound foundation in both the theory and applications of actuarial science. It encourages students to use the statistical software package R to check examples and solve problems.

Probabilistic Networks and Expert Systems

Probabilistic Networks and Expert Systems PDF Author: Robert G. Cowell
Publisher: Springer
ISBN: 0387987673
Category : Mathematics
Languages : en
Pages : 323

Get Book Here

Book Description
Probabilistic expert systems are graphical networks which support the modeling of uncertainty and decisions in large complex domains, while retaining ease of calculation. Building on original research by the authors, this book gives a thorough and rigorous mathematical treatment of the underlying ideas, structures, and algorithms. The book will be of interest to researchers in both artificial intelligence and statistics, who desire an introduction to this fascinating and rapidly developing field. The book, winner of the DeGroot Prize 2002, the only book prize in the field of statistics, is new in paperback.

Probability and Statistics for Actuaries

Probability and Statistics for Actuaries PDF Author: Natalia A. Humphreys
Publisher:
ISBN: 9781793514271
Category :
Languages : en
Pages : 294

Get Book Here

Book Description
Probability and Statistics for Actuaries provides students with a structured and detailed explanation of the probabilistic and statistical aspects of actuarial science to help them formalize and deepen their knowledge in these areas. The text is divided into two distinct parts with the first focusing on probability and the second focusing on statistics. Part I begins with a strategic review of probabilistic models and techniques. Additional chapters cover conditional probability, variance, and expectation with distinct emphasis of the Bayesian approach. Students learn about the Bayesian framework for credibility and the relationship between Bühlmann approximation and empirical Bayes. Part II begins with a review of statistical models and techniques and then proceeds with a robust chapter that discusses parametric statistical inference. The text includes two helpful appendices: a one-sample K-S table and a one-sample A-D table. Designed to help students expand their knowledge, Probability and Statistics for Actuaries is an exceptional resource for courses within the actuarial sciences. It is also ideal for individuals preparing to take professional exams given by the Society of Actuaries and Casualty Actuarial Society.

Modern Actuarial Theory and Practice, Second Edition

Modern Actuarial Theory and Practice, Second Edition PDF Author: Philip Booth
Publisher: CRC Press
ISBN: 9781584883685
Category : Mathematics
Languages : en
Pages : 848

Get Book Here

Book Description
In the years since the publication of the best-selling first edition, the incorporation of ideas and theories from the rapidly growing field of financial economics has precipitated considerable development of thinking in the actuarial profession. Modern Actuarial Theory and Practice, Second Edition integrates those changes and presents an up-to-date, comprehensive overview of UK and international actuarial theory, practice and modeling. It describes all of the traditional areas of actuarial activity, but in a manner that highlights the fundamental principles of actuarial theory and practice as well as their economic, financial, and statistical foundations.

Risk Modelling in General Insurance

Risk Modelling in General Insurance PDF Author: Roger J. Gray
Publisher: Cambridge University Press
ISBN: 0521863945
Category : Business & Economics
Languages : en
Pages : 409

Get Book Here

Book Description
A wide range of topics give students a firm foundation in statistical and actuarial concepts and their applications.

The Handbook of Graph Algorithms and Applications

The Handbook of Graph Algorithms and Applications PDF Author: Krishnaiyan Thulasiraman
Publisher: CRC Press
ISBN: 1482227061
Category : Mathematics
Languages : en
Pages : 656

Get Book Here

Book Description
The Handbook of Graph Algorithms, Volume II : Applications focuses on a wide range of algorithmic applications, including graph theory problems. The book emphasizes new algorithms and approaches that have been triggered by applications. The approaches discussed require minimal exposure to related technologies in order to understand the material. Each chapter is devoted to a single application area, from VLSI circuits to optical networks to program graphs, and features an introduction by a pioneer researcher in that particular field. The book serves as a single-source reference for graph algorithms and their related applications.

Computational Actuarial Science with R

Computational Actuarial Science with R PDF Author: Arthur Charpentier
Publisher: CRC Press
ISBN: 1466592591
Category : Business & Economics
Languages : en
Pages : 652

Get Book Here

Book Description
A Hands-On Approach to Understanding and Using Actuarial Models Computational Actuarial Science with R provides an introduction to the computational aspects of actuarial science. Using simple R code, the book helps you understand the algorithms involved in actuarial computations. It also covers more advanced topics, such as parallel computing and C/C++ embedded codes. After an introduction to the R language, the book is divided into four parts. The first one addresses methodology and statistical modeling issues. The second part discusses the computational facets of life insurance, including life contingencies calculations and prospective life tables. Focusing on finance from an actuarial perspective, the next part presents techniques for modeling stock prices, nonlinear time series, yield curves, interest rates, and portfolio optimization. The last part explains how to use R to deal with computational issues of nonlife insurance. Taking a do-it-yourself approach to understanding algorithms, this book demystifies the computational aspects of actuarial science. It shows that even complex computations can usually be done without too much trouble. Datasets used in the text are available in an R package (CASdatasets).

Statistical Methods for Ranking Data

Statistical Methods for Ranking Data PDF Author: Mayer Alvo
Publisher: Springer
ISBN: 1493914715
Category : Mathematics
Languages : en
Pages : 276

Get Book Here

Book Description
This book introduces advanced undergraduate, graduate students and practitioners to statistical methods for ranking data. An important aspect of nonparametric statistics is oriented towards the use of ranking data. Rank correlation is defined through the notion of distance functions and the notion of compatibility is introduced to deal with incomplete data. Ranking data are also modeled using a variety of modern tools such as CART, MCMC, EM algorithm and factor analysis. This book deals with statistical methods used for analyzing such data and provides a novel and unifying approach for hypotheses testing. The techniques described in the book are illustrated with examples and the statistical software is provided on the authors’ website.

Regression Modeling with Actuarial and Financial Applications

Regression Modeling with Actuarial and Financial Applications PDF Author: Edward W. Frees
Publisher: Cambridge University Press
ISBN: 0521760119
Category : Business & Economics
Languages : en
Pages : 585

Get Book Here

Book Description
This book teaches multiple regression and time series and how to use these to analyze real data in risk management and finance.