Author: John A. Richards
Publisher: Springer Science & Business Media
ISBN: 3642818730
Category : Technology & Engineering
Languages : en
Pages : 186
Book Description
Many of the practical techniques developed for treating systems described by periodic differential equations have arisen in different fields of application; con sequently some procedures have not always been known to workers in areas that might benefit substantially from them. Furthermore, recent analytical methods are computationally based so that it now seems an opportune time for an applications-oriented book to be made available that, in a sense, bridges the fields in which equations with periodic coefficients arise and which draws together analytical methods that are implemented readily. This book seeks to ftll that role, from a user's and not a theoretician's view. The complexities of periodic systems often demand a computational approach. Matrix treatments therefore are emphasized here although algebraic methods have been included where they are useful in their own right or where they establish properties that can be exploited by the matrix approach. The matrix development given calls upon the nomenclature and treatment of H. D'Angelo, Linear Time Varying Systems: Analysis and Synthesis (Boston: Allyn and Bacon 1970) which deals with time-varying systems in general. It is recommended for its modernity and comprehensive approach to systems analysis by matrix methods. Since the present work is applications-oriented no attempt has been made to be complete theoretically by way of presenting all proofs, existence theorems and so on. These can be found in D'Angelo and classic and well-developed treatises such as McLachlan, N. W. : Theory and application of Mathieu functions.
Analysis of Periodically Time-Varying Systems
Author: John A. Richards
Publisher: Springer Science & Business Media
ISBN: 3642818730
Category : Technology & Engineering
Languages : en
Pages : 186
Book Description
Many of the practical techniques developed for treating systems described by periodic differential equations have arisen in different fields of application; con sequently some procedures have not always been known to workers in areas that might benefit substantially from them. Furthermore, recent analytical methods are computationally based so that it now seems an opportune time for an applications-oriented book to be made available that, in a sense, bridges the fields in which equations with periodic coefficients arise and which draws together analytical methods that are implemented readily. This book seeks to ftll that role, from a user's and not a theoretician's view. The complexities of periodic systems often demand a computational approach. Matrix treatments therefore are emphasized here although algebraic methods have been included where they are useful in their own right or where they establish properties that can be exploited by the matrix approach. The matrix development given calls upon the nomenclature and treatment of H. D'Angelo, Linear Time Varying Systems: Analysis and Synthesis (Boston: Allyn and Bacon 1970) which deals with time-varying systems in general. It is recommended for its modernity and comprehensive approach to systems analysis by matrix methods. Since the present work is applications-oriented no attempt has been made to be complete theoretically by way of presenting all proofs, existence theorems and so on. These can be found in D'Angelo and classic and well-developed treatises such as McLachlan, N. W. : Theory and application of Mathieu functions.
Publisher: Springer Science & Business Media
ISBN: 3642818730
Category : Technology & Engineering
Languages : en
Pages : 186
Book Description
Many of the practical techniques developed for treating systems described by periodic differential equations have arisen in different fields of application; con sequently some procedures have not always been known to workers in areas that might benefit substantially from them. Furthermore, recent analytical methods are computationally based so that it now seems an opportune time for an applications-oriented book to be made available that, in a sense, bridges the fields in which equations with periodic coefficients arise and which draws together analytical methods that are implemented readily. This book seeks to ftll that role, from a user's and not a theoretician's view. The complexities of periodic systems often demand a computational approach. Matrix treatments therefore are emphasized here although algebraic methods have been included where they are useful in their own right or where they establish properties that can be exploited by the matrix approach. The matrix development given calls upon the nomenclature and treatment of H. D'Angelo, Linear Time Varying Systems: Analysis and Synthesis (Boston: Allyn and Bacon 1970) which deals with time-varying systems in general. It is recommended for its modernity and comprehensive approach to systems analysis by matrix methods. Since the present work is applications-oriented no attempt has been made to be complete theoretically by way of presenting all proofs, existence theorems and so on. These can be found in D'Angelo and classic and well-developed treatises such as McLachlan, N. W. : Theory and application of Mathieu functions.
Linear Time-varying Systems
Author: Kostas S. Tsakalis
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 302
Book Description
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 302
Book Description
Periodic Systems
Author: Sergio Bittanti
Publisher: Springer Science & Business Media
ISBN: 1848009100
Category : Language Arts & Disciplines
Languages : en
Pages : 438
Book Description
This book offers a comprehensive treatment of the theory of periodic systems, including the problems of filtering and control. It covers an array of topics, presenting an overview of the field and focusing on discrete-time signals and systems.
Publisher: Springer Science & Business Media
ISBN: 1848009100
Category : Language Arts & Disciplines
Languages : en
Pages : 438
Book Description
This book offers a comprehensive treatment of the theory of periodic systems, including the problems of filtering and control. It covers an array of topics, presenting an overview of the field and focusing on discrete-time signals and systems.
Calculus of Variations and Optimal Control Theory
Author: Daniel Liberzon
Publisher: Princeton University Press
ISBN: 0691151873
Category : Mathematics
Languages : en
Pages : 255
Book Description
This textbook offers a concise yet rigorous introduction to calculus of variations and optimal control theory, and is a self-contained resource for graduate students in engineering, applied mathematics, and related subjects. Designed specifically for a one-semester course, the book begins with calculus of variations, preparing the ground for optimal control. It then gives a complete proof of the maximum principle and covers key topics such as the Hamilton-Jacobi-Bellman theory of dynamic programming and linear-quadratic optimal control. Calculus of Variations and Optimal Control Theory also traces the historical development of the subject and features numerous exercises, notes and references at the end of each chapter, and suggestions for further study. Offers a concise yet rigorous introduction Requires limited background in control theory or advanced mathematics Provides a complete proof of the maximum principle Uses consistent notation in the exposition of classical and modern topics Traces the historical development of the subject Solutions manual (available only to teachers) Leading universities that have adopted this book include: University of Illinois at Urbana-Champaign ECE 553: Optimum Control Systems Georgia Institute of Technology ECE 6553: Optimal Control and Optimization University of Pennsylvania ESE 680: Optimal Control Theory University of Notre Dame EE 60565: Optimal Control
Publisher: Princeton University Press
ISBN: 0691151873
Category : Mathematics
Languages : en
Pages : 255
Book Description
This textbook offers a concise yet rigorous introduction to calculus of variations and optimal control theory, and is a self-contained resource for graduate students in engineering, applied mathematics, and related subjects. Designed specifically for a one-semester course, the book begins with calculus of variations, preparing the ground for optimal control. It then gives a complete proof of the maximum principle and covers key topics such as the Hamilton-Jacobi-Bellman theory of dynamic programming and linear-quadratic optimal control. Calculus of Variations and Optimal Control Theory also traces the historical development of the subject and features numerous exercises, notes and references at the end of each chapter, and suggestions for further study. Offers a concise yet rigorous introduction Requires limited background in control theory or advanced mathematics Provides a complete proof of the maximum principle Uses consistent notation in the exposition of classical and modern topics Traces the historical development of the subject Solutions manual (available only to teachers) Leading universities that have adopted this book include: University of Illinois at Urbana-Champaign ECE 553: Optimum Control Systems Georgia Institute of Technology ECE 6553: Optimal Control and Optimization University of Pennsylvania ESE 680: Optimal Control Theory University of Notre Dame EE 60565: Optimal Control
Bounded Variation and Around
Author: Jürgen Appell
Publisher: Walter de Gruyter
ISBN: 3110265117
Category : Mathematics
Languages : en
Pages : 488
Book Description
The aim of this monograph is to give a thorough and self-contained account of functions of (generalized) bounded variation, the methods connected with their study, their relations to other important function classes, and their applications to various problems arising in Fourier analysis and nonlinear analysis. In the first part the basic facts about spaces of functions of bounded variation and related spaces are collected, the main ideas which are useful in studying their properties are presented, and a comparison of their importance and suitability for applications is provided, with a particular emphasis on illustrative examples and counterexamples. The second part is concerned with (sometimes quite surprising) properties of nonlinear composition and superposition operators in such spaces. Moreover, relations with Riemann-Stieltjes integrals, convergence tests for Fourier series, and applications to nonlinear integral equations are discussed. The only prerequisite for understanding this book is a modest background in real analysis, functional analysis, and operator theory. It is addressed to non-specialists who want to get an idea of the development of the theory and its applications in the last decades, as well as a glimpse of the diversity of the directions in which current research is moving. Since the authors try to take into account recent results and state several open problems, this book might also be a fruitful source of inspiration for further research.
Publisher: Walter de Gruyter
ISBN: 3110265117
Category : Mathematics
Languages : en
Pages : 488
Book Description
The aim of this monograph is to give a thorough and self-contained account of functions of (generalized) bounded variation, the methods connected with their study, their relations to other important function classes, and their applications to various problems arising in Fourier analysis and nonlinear analysis. In the first part the basic facts about spaces of functions of bounded variation and related spaces are collected, the main ideas which are useful in studying their properties are presented, and a comparison of their importance and suitability for applications is provided, with a particular emphasis on illustrative examples and counterexamples. The second part is concerned with (sometimes quite surprising) properties of nonlinear composition and superposition operators in such spaces. Moreover, relations with Riemann-Stieltjes integrals, convergence tests for Fourier series, and applications to nonlinear integral equations are discussed. The only prerequisite for understanding this book is a modest background in real analysis, functional analysis, and operator theory. It is addressed to non-specialists who want to get an idea of the development of the theory and its applications in the last decades, as well as a glimpse of the diversity of the directions in which current research is moving. Since the authors try to take into account recent results and state several open problems, this book might also be a fruitful source of inspiration for further research.
Introduction to Time-Delay Systems
Author: Emilia Fridman
Publisher: Springer
ISBN: 3319093932
Category : Science
Languages : en
Pages : 381
Book Description
The beginning of the 21st century can be characterized as the” time-delay boom” leading to numerous important results. The purpose of this book is two-fold, to familiarize the non-expert reader with time-delay systems and to provide a systematic treatment of modern ideas and techniques for experts. This book is based on the course ”Introduction to time-delay systems” for graduate students in Engineering and Applied Mathematics that the author taught in Tel Aviv University in 2011-2012 and 2012-2013 academic years. The sufficient background to follow most of the material are the undergraduate courses in mathematics and an introduction to control. The book leads the reader from some basic classical results on time-delay systems to recent developments on Lyapunov-based analysis and design with applications to the hot topics of sampled-data and network-based control. The objective is to provide useful tools that will allow the reader not only to apply the existing methods, but also to develop new ones. It should be of interest for researchers working in the field, for graduate students in engineering and applied mathematics, and for practicing engineers. It may also be used as a textbook for a graduate course on time-delay systems.
Publisher: Springer
ISBN: 3319093932
Category : Science
Languages : en
Pages : 381
Book Description
The beginning of the 21st century can be characterized as the” time-delay boom” leading to numerous important results. The purpose of this book is two-fold, to familiarize the non-expert reader with time-delay systems and to provide a systematic treatment of modern ideas and techniques for experts. This book is based on the course ”Introduction to time-delay systems” for graduate students in Engineering and Applied Mathematics that the author taught in Tel Aviv University in 2011-2012 and 2012-2013 academic years. The sufficient background to follow most of the material are the undergraduate courses in mathematics and an introduction to control. The book leads the reader from some basic classical results on time-delay systems to recent developments on Lyapunov-based analysis and design with applications to the hot topics of sampled-data and network-based control. The objective is to provide useful tools that will allow the reader not only to apply the existing methods, but also to develop new ones. It should be of interest for researchers working in the field, for graduate students in engineering and applied mathematics, and for practicing engineers. It may also be used as a textbook for a graduate course on time-delay systems.
Time-Variant Systems and Interpolation
Author: Israel Gohberg
Publisher: Springer Science & Business Media
ISBN: 9783764327385
Category : Mathematics
Languages : en
Pages : 312
Book Description
Six papers deal with interrelated problems of modern operator theory, complex analysis, and system theory at a level accessible to advanced mathematicians and engineers. They provide a cross-section of recent advances in the understanding of the theory of time-varying systems and time-varying of analogues of interpolation problems. No index. Annotation copyrighted by Book News, Inc., Portland, OR
Publisher: Springer Science & Business Media
ISBN: 9783764327385
Category : Mathematics
Languages : en
Pages : 312
Book Description
Six papers deal with interrelated problems of modern operator theory, complex analysis, and system theory at a level accessible to advanced mathematicians and engineers. They provide a cross-section of recent advances in the understanding of the theory of time-varying systems and time-varying of analogues of interpolation problems. No index. Annotation copyrighted by Book News, Inc., Portland, OR
Stability of Linear Delay Differential Equations
Author: Dimitri Breda
Publisher: Springer
ISBN: 149392107X
Category : Science
Languages : en
Pages : 162
Book Description
This book presents the authors' recent work on the numerical methods for the stability analysis of linear autonomous and periodic delay differential equations, which consist in applying pseudospectral techniques to discretize either the solution operator or the infinitesimal generator and in using the eigenvalues of the resulting matrices to approximate the exact spectra. The purpose of the book is to provide a complete and self-contained treatment, which includes the basic underlying mathematics and numerics, examples from population dynamics and engineering applications, and Matlab programs implementing the proposed numerical methods. A number of proofs is given to furnish a solid foundation, but the emphasis is on the (unifying) idea of the pseudospectral technique for the stability analysis of DDEs. It is aimed at advanced students and researchers in applied mathematics, in dynamical systems and in various fields of science and engineering, concerned with delay systems. A relevant feature of the book is that it also provides the Matlab codes to encourage the readers to experience the practical aspects. They could use the codes to test the theory and to analyze the performances of the methods on the given examples. Moreover, they could easily modify them to tackle the numerical stability analysis of their own delay models.
Publisher: Springer
ISBN: 149392107X
Category : Science
Languages : en
Pages : 162
Book Description
This book presents the authors' recent work on the numerical methods for the stability analysis of linear autonomous and periodic delay differential equations, which consist in applying pseudospectral techniques to discretize either the solution operator or the infinitesimal generator and in using the eigenvalues of the resulting matrices to approximate the exact spectra. The purpose of the book is to provide a complete and self-contained treatment, which includes the basic underlying mathematics and numerics, examples from population dynamics and engineering applications, and Matlab programs implementing the proposed numerical methods. A number of proofs is given to furnish a solid foundation, but the emphasis is on the (unifying) idea of the pseudospectral technique for the stability analysis of DDEs. It is aimed at advanced students and researchers in applied mathematics, in dynamical systems and in various fields of science and engineering, concerned with delay systems. A relevant feature of the book is that it also provides the Matlab codes to encourage the readers to experience the practical aspects. They could use the codes to test the theory and to analyze the performances of the methods on the given examples. Moreover, they could easily modify them to tackle the numerical stability analysis of their own delay models.
Truncated Predictor Feedback for Time-Delay Systems
Author: Bin Zhou
Publisher: Springer
ISBN: 3642542069
Category : Technology & Engineering
Languages : en
Pages : 494
Book Description
This book provides a systematic approach to the design of predictor based controllers for (time-varying) linear systems with either (time-varying) input or state delays. Differently from those traditional predictor based controllers, which are infinite-dimensional static feedback laws and may cause difficulties in their practical implementation, this book develops a truncated predictor feedback (TPF) which involves only finite dimensional static state feedback. Features and topics: A novel approach referred to as truncated predictor feedback for the stabilization of (time-varying) time-delay systems in both the continuous-time setting and the discrete-time setting is built systematically Semi-global and global stabilization problems of linear time-delay systems subject to either magnitude saturation or energy constraints are solved in a systematic manner Both stabilization of a single system and consensus of a group of systems (multi-agent systems) are treated in a unified manner by applying the truncated predictor feedback and predictor feedback The properties of the solutions to a class of parametric (differential and difference) Lyapunov matrix equations are presented in detail Detailed numerical examples and applications to the spacecraft rendezvous and formation flying problems are provided to demonstrate the usefulness of the presented theoretical results This book can be a useful resource for the researchers, engineers, and graduate students in the fields of control, applied mathematics, mechanical engineering, electrical engineering, and aerospace engineering.
Publisher: Springer
ISBN: 3642542069
Category : Technology & Engineering
Languages : en
Pages : 494
Book Description
This book provides a systematic approach to the design of predictor based controllers for (time-varying) linear systems with either (time-varying) input or state delays. Differently from those traditional predictor based controllers, which are infinite-dimensional static feedback laws and may cause difficulties in their practical implementation, this book develops a truncated predictor feedback (TPF) which involves only finite dimensional static state feedback. Features and topics: A novel approach referred to as truncated predictor feedback for the stabilization of (time-varying) time-delay systems in both the continuous-time setting and the discrete-time setting is built systematically Semi-global and global stabilization problems of linear time-delay systems subject to either magnitude saturation or energy constraints are solved in a systematic manner Both stabilization of a single system and consensus of a group of systems (multi-agent systems) are treated in a unified manner by applying the truncated predictor feedback and predictor feedback The properties of the solutions to a class of parametric (differential and difference) Lyapunov matrix equations are presented in detail Detailed numerical examples and applications to the spacecraft rendezvous and formation flying problems are provided to demonstrate the usefulness of the presented theoretical results This book can be a useful resource for the researchers, engineers, and graduate students in the fields of control, applied mathematics, mechanical engineering, electrical engineering, and aerospace engineering.
Delay Differential Equations
Author: Balakumar Balachandran
Publisher: Springer Science & Business Media
ISBN: 0387855955
Category : Technology & Engineering
Languages : en
Pages : 349
Book Description
Delay Differential Equations: Recent Advances and New Directions cohesively presents contributions from leading experts on the theory and applications of functional and delay differential equations (DDEs). Students and researchers will benefit from a unique focus on theory, symbolic, and numerical methods, which illustrate how the concepts described can be applied to practical systems ranging from automotive engines to remote control over the Internet. Comprehensive coverage of recent advances, analytical contributions, computational techniques, and illustrative examples of the application of current results drawn from biology, physics, mechanics, and control theory. Students, engineers and researchers from various scientific fields will find Delay Differential Equations: Recent Advances and New Directions a valuable reference.
Publisher: Springer Science & Business Media
ISBN: 0387855955
Category : Technology & Engineering
Languages : en
Pages : 349
Book Description
Delay Differential Equations: Recent Advances and New Directions cohesively presents contributions from leading experts on the theory and applications of functional and delay differential equations (DDEs). Students and researchers will benefit from a unique focus on theory, symbolic, and numerical methods, which illustrate how the concepts described can be applied to practical systems ranging from automotive engines to remote control over the Internet. Comprehensive coverage of recent advances, analytical contributions, computational techniques, and illustrative examples of the application of current results drawn from biology, physics, mechanics, and control theory. Students, engineers and researchers from various scientific fields will find Delay Differential Equations: Recent Advances and New Directions a valuable reference.