Spline Models for Observational Data

Spline Models for Observational Data PDF Author: Grace Wahba
Publisher:
ISBN:
Category : Mathematical statistics
Languages : en
Pages : 169

Get Book Here

Book Description

Spline Models for Observational Data

Spline Models for Observational Data PDF Author: Grace Wahba
Publisher:
ISBN:
Category : Mathematical statistics
Languages : en
Pages : 169

Get Book Here

Book Description


Spline Models for Observational Data

Spline Models for Observational Data PDF Author: Grace Wahba
Publisher: SIAM
ISBN: 0898712440
Category : Mathematics
Languages : en
Pages : 174

Get Book Here

Book Description
This book serves well as an introduction into the more theoretical aspects of the use of spline models. It develops a theory and practice for the estimation of functions from noisy data on functionals. The simplest example is the estimation of a smooth curve, given noisy observations on a finite number of its values. Convergence properties, data based smoothing parameter selection, confidence intervals, and numerical methods are established which are appropriate to a number of problems within this framework. Methods for including side conditions and other prior information in solving ill posed inverse problems are provided. Data which involves samples of random variables with Gaussian, Poisson, binomial, and other distributions are treated in a unified optimization context. Experimental design questions, i.e., which functionals should be observed, are studied in a general context. Extensions to distributed parameter system identification problems are made by considering implicitly defined functionals.

Spline Regression Models

Spline Regression Models PDF Author: Lawrence C. Marsh
Publisher: SAGE
ISBN: 9780761924203
Category : Mathematics
Languages : en
Pages : 86

Get Book Here

Book Description
Spline Regression Models shows how to use dummy variables to formulate and estimate spline regression models both in situations where the number and location of the spline knots are known in advance, and where estimation is required.

Multivariate Splines

Multivariate Splines PDF Author: Charles K. Chui
Publisher: SIAM
ISBN: 0898712262
Category : Mathematics
Languages : en
Pages : 192

Get Book Here

Book Description
Subject of multivariate splines presented from an elementary point of view; includes many open problems.

Smoothing Spline ANOVA Models

Smoothing Spline ANOVA Models PDF Author: Chong Gu
Publisher: Springer
ISBN: 9781489989840
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
Nonparametric function estimation with stochastic data, otherwise known as smoothing, has been studied by several generations of statisticians. Assisted by the ample computing power in today's servers, desktops, and laptops, smoothing methods have been finding their ways into everyday data analysis by practitioners. While scores of methods have proved successful for univariate smoothing, ones practical in multivariate settings number far less. Smoothing spline ANOVA models are a versatile family of smoothing methods derived through roughness penalties, that are suitable for both univariate and multivariate problems. In this book, the author presents a treatise on penalty smoothing under a unified framework. Methods are developed for (i) regression with Gaussian and non-Gaussian responses as well as with censored lifetime data; (ii) density and conditional density estimation under a variety of sampling schemes; and (iii) hazard rate estimation with censored life time data and covariates. The unifying themes are the general penalized likelihood method and the construction of multivariate models with built-in ANOVA decompositions. Extensive discussions are devoted to model construction, smoothing parameter selection, computation, and asymptotic convergence. Most of the computational and data analytical tools discussed in the book are implemented in R, an open-source platform for statistical computing and graphics. Suites of functions are embodied in the R package gss, and are illustrated throughout the book using simulated and real data examples. This monograph will be useful as a reference work for researchers in theoretical and applied statistics as well as for those in other related disciplines. It can also be used as a text for graduate level courses on the subject. Most of the materials are accessible to a second year graduate student with a good training in calculus and linear algebra and working knowledge in basic statistical inferences such as linear models and maximum likelihood estimates.

Nonparametric Regression and Spline Smoothing, Second Edition

Nonparametric Regression and Spline Smoothing, Second Edition PDF Author: Randall L. Eubank
Publisher: CRC Press
ISBN: 9780824793371
Category : Mathematics
Languages : en
Pages : 368

Get Book Here

Book Description
Provides a unified account of the most popular approaches to nonparametric regression smoothing. This edition contains discussions of boundary corrections for trigonometric series estimators; detailed asymptotics for polynomial regression; testing goodness-of-fit; estimation in partially linear models; practical aspects, problems and methods for confidence intervals and bands; local polynomial regression; and form and asymptotic properties of linear smoothing splines.

Curve and Surface Fitting with Splines

Curve and Surface Fitting with Splines PDF Author: Paul Dierckx
Publisher: Oxford University Press
ISBN: 9780198534402
Category : Computers
Languages : en
Pages : 308

Get Book Here

Book Description
The fitting of a curve or surface through a set of observational data is a very frequent problem in different disciplines (mathematics, engineering, medicine, ...) with many interesting applications. This book describes the algorithms and mathematical fundamentals of a widely used software package for data fitting with (tensor product) splines. As such it gives a survey of possibilities and benefits but also of the problems to cope with when approximating with this popular type of function. In particular it is demonstrated in detail how the properties of B-splines can be fully exploited for improving the computational efficiency and for incorporating different boundary or shape preserving constraints. Special attention is also paid to strategies for an automatic and adaptive knot selection with intent to obtain serious data reductions. The practical use of the smoothing software is illustrated with many examples, academic as well as taken from real life.

Smoothness Priors Analysis of Time Series

Smoothness Priors Analysis of Time Series PDF Author: Genshiro Kitagawa
Publisher: Springer Science & Business Media
ISBN: 1461207614
Category : Mathematics
Languages : en
Pages : 265

Get Book Here

Book Description
Smoothness Priors Analysis of Time Series addresses some of the problems of modeling stationary and nonstationary time series primarily from a Bayesian stochastic regression "smoothness priors" state space point of view. Prior distributions on model coefficients are parametrized by hyperparameters. Maximizing the likelihood of a small number of hyperparameters permits the robust modeling of a time series with relatively complex structure and a very large number of implicitly inferred parameters. The critical statistical ideas in smoothness priors are the likelihood of the Bayesian model and the use of likelihood as a measure of the goodness of fit of the model. The emphasis is on a general state space approach in which the recursive conditional distributions for prediction, filtering, and smoothing are realized using a variety of nonstandard methods including numerical integration, a Gaussian mixture distribution-two filter smoothing formula, and a Monte Carlo "particle-path tracing" method in which the distributions are approximated by many realizations. The methods are applicable for modeling time series with complex structures.

Curves and Surfaces

Curves and Surfaces PDF Author: Pierre-Jean Laurent
Publisher: Academic Press
ISBN: 1483263878
Category : Mathematics
Languages : en
Pages : 535

Get Book Here

Book Description
Curves and Surfaces provides information pertinent to the fundamental aspects of approximation theory with emphasis on approximation of images, surface compression, wavelets, and tomography. This book covers a variety of topics, including error estimates for multiquadratic interpolation, spline manifolds, and vector spline approximation. Organized into 77 chapters, this book begins with an overview of the method, based on a local Taylor expansion of the final curve, for computing the parameter values. This text then presents a vector approximation based on general spline function theory. Other chapters consider a nonparametric technique for estimating under random censorship the amplitude of a change point in change point hazard models. This book discusses as well the algorithm for ray tracing rational parametric surfaces based on inversion and implicitization. The final chapter deals with the results concerning the norm of the interpolation operator and error estimates for a square domain. This book is a valuable resource for mathematicians.

Semiparametric Regression with R

Semiparametric Regression with R PDF Author: Jaroslaw Harezlak
Publisher: Springer
ISBN: 1493988530
Category : Mathematics
Languages : en
Pages : 341

Get Book Here

Book Description
This easy-to-follow applied book on semiparametric regression methods using R is intended to close the gap between the available methodology and its use in practice. Semiparametric regression has a large literature but much of it is geared towards data analysts who have advanced knowledge of statistical methods. While R now has a great deal of semiparametric regression functionality, many of these developments have not trickled down to rank-and-file statistical analysts. The authors assemble a broad range of semiparametric regression R analyses and put them in a form that is useful for applied researchers. There are chapters devoted to penalized spines, generalized additive models, grouped data, bivariate extensions of penalized spines, and spatial semi-parametric regression models. Where feasible, the R code is provided in the text, however the book is also accompanied by an external website complete with datasets and R code. Because of its flexibility, semiparametric regression has proven to be of great value with many applications in fields as diverse as astronomy, biology, medicine, economics, and finance. This book is intended for applied statistical analysts who have some familiarity with R.