Author: Michael Ziese
Publisher: Springer
ISBN: 3540452583
Category : Technology & Engineering
Languages : en
Pages : 448
Book Description
For 50 years conventional electronics has ignored the electron spin. The manipulation and utilisation of the electron spin heralds an exciting and rapidly changing era in electronics, combining the disciplines of magnetism and traditional electronics. The first generation of "spintronic" devices (such as read heads based on giant magnetoresistance or non-volatile magnetic random access memories) have already gained dominant positions in the market place. This volume, the first of its kind on spin electronics describes all the essential topics for new researchers entering the field. It covers magnetism and semiconductor basics, micromagnetism, experimental techniques, materials science, device fabrication and new developments in spin-dependent processes. At the end of most chapters are a number of exercises and worked problems to aid the reader in understanding this fascinating new field.
Spin Electronics
Author: Michael Ziese
Publisher: Springer
ISBN: 3540452583
Category : Technology & Engineering
Languages : en
Pages : 448
Book Description
For 50 years conventional electronics has ignored the electron spin. The manipulation and utilisation of the electron spin heralds an exciting and rapidly changing era in electronics, combining the disciplines of magnetism and traditional electronics. The first generation of "spintronic" devices (such as read heads based on giant magnetoresistance or non-volatile magnetic random access memories) have already gained dominant positions in the market place. This volume, the first of its kind on spin electronics describes all the essential topics for new researchers entering the field. It covers magnetism and semiconductor basics, micromagnetism, experimental techniques, materials science, device fabrication and new developments in spin-dependent processes. At the end of most chapters are a number of exercises and worked problems to aid the reader in understanding this fascinating new field.
Publisher: Springer
ISBN: 3540452583
Category : Technology & Engineering
Languages : en
Pages : 448
Book Description
For 50 years conventional electronics has ignored the electron spin. The manipulation and utilisation of the electron spin heralds an exciting and rapidly changing era in electronics, combining the disciplines of magnetism and traditional electronics. The first generation of "spintronic" devices (such as read heads based on giant magnetoresistance or non-volatile magnetic random access memories) have already gained dominant positions in the market place. This volume, the first of its kind on spin electronics describes all the essential topics for new researchers entering the field. It covers magnetism and semiconductor basics, micromagnetism, experimental techniques, materials science, device fabrication and new developments in spin-dependent processes. At the end of most chapters are a number of exercises and worked problems to aid the reader in understanding this fascinating new field.
Spin Electronics
Author: David D. Awschalom
Publisher: Springer Science & Business Media
ISBN: 9401705321
Category : Science
Languages : en
Pages : 216
Book Description
The history of scientific research and technological development is replete with examples of breakthroughs that have advanced the frontiers of knowledge, but seldom does it record events that constitute paradigm shifts in broad areas of intellectual pursuit. One notable exception, however, is that of spin electronics (also called spintronics, magnetoelectronics or magnetronics), wherein information is carried by electron spin in addition to, or in place of, electron charge. It is now well established in scientific and engineering communities that Moore's Law, having been an excellent predictor of integrated circuit density and computer performance since the 1970s, now faces great challenges as the scale of electronic devices has been reduced to the level where quantum effects become significant factors in device operation. Electron spin is one such effect that offers the opportunity to continue the gains predicted by Moore's Law, by taking advantage of the confluence of magnetics and semiconductor electronics in the newly emerging discipline of spin electronics. From a fundamental viewpoine, spin-polarization transport in a material occurs when there is an imbalance of spin populations at the Fermi energy. In ferromagnetic metals this imbalance results from a shift in the energy states available to spin-up and spin-down electrons. In practical applications, a ferromagnetic metal may be used as a source of spin-polarized electronics to be injected into a semiconductor, a superconductor or a normal metal, or to tunnel through an insulating barrier.
Publisher: Springer Science & Business Media
ISBN: 9401705321
Category : Science
Languages : en
Pages : 216
Book Description
The history of scientific research and technological development is replete with examples of breakthroughs that have advanced the frontiers of knowledge, but seldom does it record events that constitute paradigm shifts in broad areas of intellectual pursuit. One notable exception, however, is that of spin electronics (also called spintronics, magnetoelectronics or magnetronics), wherein information is carried by electron spin in addition to, or in place of, electron charge. It is now well established in scientific and engineering communities that Moore's Law, having been an excellent predictor of integrated circuit density and computer performance since the 1970s, now faces great challenges as the scale of electronic devices has been reduced to the level where quantum effects become significant factors in device operation. Electron spin is one such effect that offers the opportunity to continue the gains predicted by Moore's Law, by taking advantage of the confluence of magnetics and semiconductor electronics in the newly emerging discipline of spin electronics. From a fundamental viewpoine, spin-polarization transport in a material occurs when there is an imbalance of spin populations at the Fermi energy. In ferromagnetic metals this imbalance results from a shift in the energy states available to spin-up and spin-down electrons. In practical applications, a ferromagnetic metal may be used as a source of spin-polarized electronics to be injected into a semiconductor, a superconductor or a normal metal, or to tunnel through an insulating barrier.
Concepts in Spin Electronics
Author: Sadamichi Maekawa
Publisher: OUP Oxford
ISBN: 0191524492
Category : Technology & Engineering
Languages : en
Pages : 416
Book Description
Nowadays information technology is based on semiconductor and ferromagnetic materials. Information processing and computation are based on electron charge in semiconductor transistors and integrated circuits, and information is stored on magnetic high-density hard disks based on the physics of the electron spins. Recently, a new branch of physics and nanotechnology, called magneto-electronics, spintronics, or spin electronics, has emerged, which aims at simultaneously exploiting both the charge and the spin of electrons in the same device. A broader goal is to develop new functionality that does not exist separately in a ferromagnet or a semiconductor. The aim of this book is to present new directions in the development of spin electronics in both the basic physics and the technology which will become the foundation of future electronics.
Publisher: OUP Oxford
ISBN: 0191524492
Category : Technology & Engineering
Languages : en
Pages : 416
Book Description
Nowadays information technology is based on semiconductor and ferromagnetic materials. Information processing and computation are based on electron charge in semiconductor transistors and integrated circuits, and information is stored on magnetic high-density hard disks based on the physics of the electron spins. Recently, a new branch of physics and nanotechnology, called magneto-electronics, spintronics, or spin electronics, has emerged, which aims at simultaneously exploiting both the charge and the spin of electrons in the same device. A broader goal is to develop new functionality that does not exist separately in a ferromagnet or a semiconductor. The aim of this book is to present new directions in the development of spin electronics in both the basic physics and the technology which will become the foundation of future electronics.
Concepts in Spin Electronics
Author: Sadamichi Maekawa
Publisher: Oxford University Press, USA
ISBN: 0198568215
Category : Computers
Languages : en
Pages : 413
Book Description
Recently, a new branch of physics and nanotechnology called The aim of this book is tod, which aims at simultaneously present new directions in the development of spin electronics in both the basic physics and the technologywhich will become the foundation of future electronics.ich will become the foundation of future electronics.
Publisher: Oxford University Press, USA
ISBN: 0198568215
Category : Computers
Languages : en
Pages : 413
Book Description
Recently, a new branch of physics and nanotechnology called The aim of this book is tod, which aims at simultaneously present new directions in the development of spin electronics in both the basic physics and the technologywhich will become the foundation of future electronics.ich will become the foundation of future electronics.
Electron Spin Resonance
Author: Charles P. Poole
Publisher: Courier Corporation
ISBN: 9780486694443
Category : Science
Languages : en
Pages : 820
Book Description
Second edition of classic reference contains comprehensive coverage of experimental techniques, theoretical and practical aspects of ESR instrumentation. Recent developments, plus how to build, use ESR spectrometer. References. 1982 edition.
Publisher: Courier Corporation
ISBN: 9780486694443
Category : Science
Languages : en
Pages : 820
Book Description
Second edition of classic reference contains comprehensive coverage of experimental techniques, theoretical and practical aspects of ESR instrumentation. Recent developments, plus how to build, use ESR spectrometer. References. 1982 edition.
Spintronics for Next Generation Innovative Devices
Author: Katsuaki Sato
Publisher: John Wiley & Sons
ISBN: 1118751914
Category : Technology & Engineering
Languages : en
Pages : 275
Book Description
Spintronics (short for spin electronics, or spin transport electronics) exploits both the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, in solid-state devices. Controlling the spin of electrons within a device can produce surprising and substantial changes in its properties. Drawing from many cutting edge fields, including physics, materials science, and electronics device technology, spintronics has provided the key concepts for many next generation information processing and transmitting technologies. This book discusses all aspects of spintronics from basic science to applications and covers: • magnetic semiconductors • topological insulators • spin current science • spin caloritronics • ultrafast magnetization reversal • magneto-resistance effects and devices • spin transistors • quantum information devices This book provides a comprehensive introduction to Spintronics for researchers and students in academia and industry.
Publisher: John Wiley & Sons
ISBN: 1118751914
Category : Technology & Engineering
Languages : en
Pages : 275
Book Description
Spintronics (short for spin electronics, or spin transport electronics) exploits both the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, in solid-state devices. Controlling the spin of electrons within a device can produce surprising and substantial changes in its properties. Drawing from many cutting edge fields, including physics, materials science, and electronics device technology, spintronics has provided the key concepts for many next generation information processing and transmitting technologies. This book discusses all aspects of spintronics from basic science to applications and covers: • magnetic semiconductors • topological insulators • spin current science • spin caloritronics • ultrafast magnetization reversal • magneto-resistance effects and devices • spin transistors • quantum information devices This book provides a comprehensive introduction to Spintronics for researchers and students in academia and industry.
Spin Current
Author: Sadamichi Maekawa
Publisher: Oxford University Press
ISBN: 0198787073
Category : Science
Languages : en
Pages : 541
Book Description
In a new branch of physics and technology, called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called "spin current", are manipulated and controlled together. This book is intended to provide an introduction and guide to the new physics and applications of spin current.
Publisher: Oxford University Press
ISBN: 0198787073
Category : Science
Languages : en
Pages : 541
Book Description
In a new branch of physics and technology, called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called "spin current", are manipulated and controlled together. This book is intended to provide an introduction and guide to the new physics and applications of spin current.
Semiconductor Spintronics and Quantum Computation
Author: D.D. Awschalom
Publisher: Springer Science & Business Media
ISBN: 366205003X
Category : Technology & Engineering
Languages : en
Pages : 321
Book Description
The past few decades of research and development in solid-state semicon ductor physics and electronics have witnessed a rapid growth in the drive to exploit quantum mechanics in the design and function of semiconductor devices. This has been fueled for instance by the remarkable advances in our ability to fabricate nanostructures such as quantum wells, quantum wires and quantum dots. Despite this contemporary focus on semiconductor "quantum devices," a principal quantum mechanical aspect of the electron - its spin has it accounts for an added quan largely been ignored (except in as much as tum mechanical degeneracy). In recent years, however, a new paradigm of electronics based on the spin degree of freedom of the electron has begun to emerge. This field of semiconductor "spintronics" (spin transport electron ics or spin-based electronics) places electron spin rather than charge at the very center of interest. The underlying basis for this new electronics is the intimate connection between the charge and spin degrees of freedom of the electron via the Pauli principle. A crucial implication of this relationship is that spin effects can often be accessed through the orbital properties of the electron in the solid state. Examples for this are optical measurements of the spin state based on the Faraday effect and spin-dependent transport measure ments such as giant magneto-resistance (GMR). In this manner, information can be encoded in not only the electron's charge but also in its spin state, i. e.
Publisher: Springer Science & Business Media
ISBN: 366205003X
Category : Technology & Engineering
Languages : en
Pages : 321
Book Description
The past few decades of research and development in solid-state semicon ductor physics and electronics have witnessed a rapid growth in the drive to exploit quantum mechanics in the design and function of semiconductor devices. This has been fueled for instance by the remarkable advances in our ability to fabricate nanostructures such as quantum wells, quantum wires and quantum dots. Despite this contemporary focus on semiconductor "quantum devices," a principal quantum mechanical aspect of the electron - its spin has it accounts for an added quan largely been ignored (except in as much as tum mechanical degeneracy). In recent years, however, a new paradigm of electronics based on the spin degree of freedom of the electron has begun to emerge. This field of semiconductor "spintronics" (spin transport electron ics or spin-based electronics) places electron spin rather than charge at the very center of interest. The underlying basis for this new electronics is the intimate connection between the charge and spin degrees of freedom of the electron via the Pauli principle. A crucial implication of this relationship is that spin effects can often be accessed through the orbital properties of the electron in the solid state. Examples for this are optical measurements of the spin state based on the Faraday effect and spin-dependent transport measure ments such as giant magneto-resistance (GMR). In this manner, information can be encoded in not only the electron's charge but also in its spin state, i. e.
Theory of Itinerant Electron Magnetism
Author: Jürgen Kübler
Publisher: Oxford University Press
ISBN: 019289563X
Category : Science
Languages : en
Pages : 541
Book Description
This book, in the broadest sense, is an application of quantum mechanics and statistical mechanics to the field of magnetism. Under certain well described conditions, an immensely large number of electrons moving in the solid will collectively produce permanent magnetism. Permanent magnets are of fundamental interest, and magnetic materials are of great practical importance as they provide a large field of technological applications. The physical details describing the many electron problem of magnetism are presented in this book on the basis of the density functional approximation. The emphasis is on realistic magnets, for which the equations describing properties of the many electron problem can only be solved by using computers. The significant recent and continuing improvements are, to a very large extent, responsible for the progress in this field. Along with an introduction to the density functional theory, the book describes representative computational methods and detailed formulas for physical properties of magnets which include among other things the computation of magnetic ordering temperatures, the giant magneto-resistance, magneto-optical effects, weak ferromagnetism, the anomalous Hall and Nernst effects, and novel quasiparticles, such as Weyl fermions and magnetic skyrmions.
Publisher: Oxford University Press
ISBN: 019289563X
Category : Science
Languages : en
Pages : 541
Book Description
This book, in the broadest sense, is an application of quantum mechanics and statistical mechanics to the field of magnetism. Under certain well described conditions, an immensely large number of electrons moving in the solid will collectively produce permanent magnetism. Permanent magnets are of fundamental interest, and magnetic materials are of great practical importance as they provide a large field of technological applications. The physical details describing the many electron problem of magnetism are presented in this book on the basis of the density functional approximation. The emphasis is on realistic magnets, for which the equations describing properties of the many electron problem can only be solved by using computers. The significant recent and continuing improvements are, to a very large extent, responsible for the progress in this field. Along with an introduction to the density functional theory, the book describes representative computational methods and detailed formulas for physical properties of magnets which include among other things the computation of magnetic ordering temperatures, the giant magneto-resistance, magneto-optical effects, weak ferromagnetism, the anomalous Hall and Nernst effects, and novel quasiparticles, such as Weyl fermions and magnetic skyrmions.
Electronic Devices Architectures for the NANO-CMOS Era
Author: Simon Deleonibus
Publisher: CRC Press
ISBN: 9814241296
Category : Technology & Engineering
Languages : en
Pages : 440
Book Description
In this book, internationally recognized researchers give a state-of-the-art overview of the electronic device architectures required for the nano-CMOS era and beyond. Challenges relevant to the scaling of CMOS nanoelectronics are addressed through different core CMOS and memory device options in the first part of the book. The second part reviews new device concepts for nanoelectronics beyond CMOS. The book covers the fundamental limits of core CMOS, improving scaling by the introduction of new materials or processes, new architectures using SOI, multigates and multichannels, and quantum computing.
Publisher: CRC Press
ISBN: 9814241296
Category : Technology & Engineering
Languages : en
Pages : 440
Book Description
In this book, internationally recognized researchers give a state-of-the-art overview of the electronic device architectures required for the nano-CMOS era and beyond. Challenges relevant to the scaling of CMOS nanoelectronics are addressed through different core CMOS and memory device options in the first part of the book. The second part reviews new device concepts for nanoelectronics beyond CMOS. The book covers the fundamental limits of core CMOS, improving scaling by the introduction of new materials or processes, new architectures using SOI, multigates and multichannels, and quantum computing.