Author: Ruben Aldrovandi
Publisher: World Scientific
ISBN: 9789812799838
Category : Mathematics
Languages : en
Pages : 344
Book Description
Ch. 1. Some fundamental notions. 1.1. Definitions. 1.2. Components of a matrix. 1.3. Matrix functions. 1.4. Normal matrices -- ch. 2. Evolving systems -- ch. 3. Markov chains. 3.1. Non-negative matrices. 3.2. General properties -- ch. 4. Glass transition -- ch. 5. The Kerner model. 5.1. A simple example: Se-As glass -- ch. 6. Formal developments. 6.1. Spectral aspects. 6.2. Reducibility and regularity. 6.3. Projectors and asymptotics. 6.4. Continuum time -- ch. 7. Equilibrium, dissipation and ergodicity. 7.1. Recurrence, transience and periodicity. 7.2. Detailed balancing and reversibility. 7.3. Ergodicity -- ch. 8. Prelude -- ch. 9. Definition and main properties. 9.1. Bases. 9.2. Double Fourier transform. 9.3. Random walks -- ch. 10. Discrete quantum mechanics. 10.1. Introduction. 10.2. Weyl-Heisenberg groups. 10.3. Weyl-Wigner transformations. 10.4. Braiding and quantum groups -- ch. 11. Quantum symplectic structure. 11.1. Matrix differential geometry. 11.2. The symplectic form. 11.3. The quantum fabric -- ch. 12. An organizing tool -- ch. 13. Bell polynomials. 13.1. Definition and elementary properties. 13.2. The matrix representation. 13.3. The Lagrange inversion formula. 13.4. Developments -- ch. 14. Determinants and traces. 14.1. Introduction. 14.2. Symmetric functions. 14.3. Polynomials. 14.4. Characteristic polynomials. 14.5. Lie algebras invariants -- ch. 15. Projectors and iterates. 15.1. Projectors, revisited. 15.2. Continuous iterates -- ch. 16. Gases: real and ideal. 16.1. Microcanonical ensemble. 16.2. The canonical ensemble. 16.3. The grand canonical ensemble. 16.4. Braid statistics. 16.5. Condensation theories. 16.6. The Fredholm formalism.
Special Matrices of Mathematical Physics
Author: Ruben Aldrovandi
Publisher: World Scientific
ISBN: 9789812799838
Category : Mathematics
Languages : en
Pages : 344
Book Description
Ch. 1. Some fundamental notions. 1.1. Definitions. 1.2. Components of a matrix. 1.3. Matrix functions. 1.4. Normal matrices -- ch. 2. Evolving systems -- ch. 3. Markov chains. 3.1. Non-negative matrices. 3.2. General properties -- ch. 4. Glass transition -- ch. 5. The Kerner model. 5.1. A simple example: Se-As glass -- ch. 6. Formal developments. 6.1. Spectral aspects. 6.2. Reducibility and regularity. 6.3. Projectors and asymptotics. 6.4. Continuum time -- ch. 7. Equilibrium, dissipation and ergodicity. 7.1. Recurrence, transience and periodicity. 7.2. Detailed balancing and reversibility. 7.3. Ergodicity -- ch. 8. Prelude -- ch. 9. Definition and main properties. 9.1. Bases. 9.2. Double Fourier transform. 9.3. Random walks -- ch. 10. Discrete quantum mechanics. 10.1. Introduction. 10.2. Weyl-Heisenberg groups. 10.3. Weyl-Wigner transformations. 10.4. Braiding and quantum groups -- ch. 11. Quantum symplectic structure. 11.1. Matrix differential geometry. 11.2. The symplectic form. 11.3. The quantum fabric -- ch. 12. An organizing tool -- ch. 13. Bell polynomials. 13.1. Definition and elementary properties. 13.2. The matrix representation. 13.3. The Lagrange inversion formula. 13.4. Developments -- ch. 14. Determinants and traces. 14.1. Introduction. 14.2. Symmetric functions. 14.3. Polynomials. 14.4. Characteristic polynomials. 14.5. Lie algebras invariants -- ch. 15. Projectors and iterates. 15.1. Projectors, revisited. 15.2. Continuous iterates -- ch. 16. Gases: real and ideal. 16.1. Microcanonical ensemble. 16.2. The canonical ensemble. 16.3. The grand canonical ensemble. 16.4. Braid statistics. 16.5. Condensation theories. 16.6. The Fredholm formalism.
Publisher: World Scientific
ISBN: 9789812799838
Category : Mathematics
Languages : en
Pages : 344
Book Description
Ch. 1. Some fundamental notions. 1.1. Definitions. 1.2. Components of a matrix. 1.3. Matrix functions. 1.4. Normal matrices -- ch. 2. Evolving systems -- ch. 3. Markov chains. 3.1. Non-negative matrices. 3.2. General properties -- ch. 4. Glass transition -- ch. 5. The Kerner model. 5.1. A simple example: Se-As glass -- ch. 6. Formal developments. 6.1. Spectral aspects. 6.2. Reducibility and regularity. 6.3. Projectors and asymptotics. 6.4. Continuum time -- ch. 7. Equilibrium, dissipation and ergodicity. 7.1. Recurrence, transience and periodicity. 7.2. Detailed balancing and reversibility. 7.3. Ergodicity -- ch. 8. Prelude -- ch. 9. Definition and main properties. 9.1. Bases. 9.2. Double Fourier transform. 9.3. Random walks -- ch. 10. Discrete quantum mechanics. 10.1. Introduction. 10.2. Weyl-Heisenberg groups. 10.3. Weyl-Wigner transformations. 10.4. Braiding and quantum groups -- ch. 11. Quantum symplectic structure. 11.1. Matrix differential geometry. 11.2. The symplectic form. 11.3. The quantum fabric -- ch. 12. An organizing tool -- ch. 13. Bell polynomials. 13.1. Definition and elementary properties. 13.2. The matrix representation. 13.3. The Lagrange inversion formula. 13.4. Developments -- ch. 14. Determinants and traces. 14.1. Introduction. 14.2. Symmetric functions. 14.3. Polynomials. 14.4. Characteristic polynomials. 14.5. Lie algebras invariants -- ch. 15. Projectors and iterates. 15.1. Projectors, revisited. 15.2. Continuous iterates -- ch. 16. Gases: real and ideal. 16.1. Microcanonical ensemble. 16.2. The canonical ensemble. 16.3. The grand canonical ensemble. 16.4. Braid statistics. 16.5. Condensation theories. 16.6. The Fredholm formalism.
Kernel Functions and Elliptic Differential Equations in Mathematical Physics
Author: Stefan Bergman
Publisher: Courier Corporation
ISBN: 0486445534
Category : Mathematics
Languages : en
Pages : 450
Book Description
This text focuses on the theory of boundary value problems in partial differential equations, which plays a central role in various fields of pure and applied mathematics, theoretical physics, and engineering. Geared toward upper-level undergraduates and graduate students, it discusses a portion of the theory from a unifying point of view and provides a systematic and self-contained introduction to each branch of the applications it employs.
Publisher: Courier Corporation
ISBN: 0486445534
Category : Mathematics
Languages : en
Pages : 450
Book Description
This text focuses on the theory of boundary value problems in partial differential equations, which plays a central role in various fields of pure and applied mathematics, theoretical physics, and engineering. Geared toward upper-level undergraduates and graduate students, it discusses a portion of the theory from a unifying point of view and provides a systematic and self-contained introduction to each branch of the applications it employs.
Theory Of Matrices
Author: B S Vatssa
Publisher: New Age International
ISBN: 9788122401233
Category : Matrices
Languages : en
Pages : 288
Book Description
This Book Enables Students To Thoroughly Master Pre-College Mathematics And Helps Them To Prepare For Various Entrance (Screening) Tests With Skill And Confidence.The Book Thoroughly Explains The Following: 1. Algebra 2. Trigonometry 3. Co-Ordinate Geometry 4. Three Dimensional Geometry 5. Calculus 6. Vectors 7. StatisticsIn Addition To Theory, The Book Includes A Large Number Of -Solved Examples -Practice Problems With Answers -Objective Questions Including Multiple Choice, True/False And Fill-In-The-Blanks -Model Test Papers And Iit Screening Tests For Self-Test The Language Is Clear And Simple Throughout The Book And The Entire Subject Is Explained In An Interesting And Easy-To-Understand Manner.
Publisher: New Age International
ISBN: 9788122401233
Category : Matrices
Languages : en
Pages : 288
Book Description
This Book Enables Students To Thoroughly Master Pre-College Mathematics And Helps Them To Prepare For Various Entrance (Screening) Tests With Skill And Confidence.The Book Thoroughly Explains The Following: 1. Algebra 2. Trigonometry 3. Co-Ordinate Geometry 4. Three Dimensional Geometry 5. Calculus 6. Vectors 7. StatisticsIn Addition To Theory, The Book Includes A Large Number Of -Solved Examples -Practice Problems With Answers -Objective Questions Including Multiple Choice, True/False And Fill-In-The-Blanks -Model Test Papers And Iit Screening Tests For Self-Test The Language Is Clear And Simple Throughout The Book And The Entire Subject Is Explained In An Interesting And Easy-To-Understand Manner.
A Course in Modern Mathematical Physics
Author: Peter Szekeres
Publisher: Cambridge University Press
ISBN: 9780521829601
Category : Mathematics
Languages : en
Pages : 620
Book Description
This textbook, first published in 2004, provides an introduction to the major mathematical structures used in physics today.
Publisher: Cambridge University Press
ISBN: 9780521829601
Category : Mathematics
Languages : en
Pages : 620
Book Description
This textbook, first published in 2004, provides an introduction to the major mathematical structures used in physics today.
Matrix Groups for Undergraduates
Author: Kristopher Tapp
Publisher: American Mathematical Soc.
ISBN: 1470427222
Category : Mathematics
Languages : en
Pages : 250
Book Description
Matrix groups touch an enormous spectrum of the mathematical arena. This textbook brings them into the undergraduate curriculum. It makes an excellent one-semester course for students familiar with linear and abstract algebra and prepares them for a graduate course on Lie groups. Matrix Groups for Undergraduates is concrete and example-driven, with geometric motivation and rigorous proofs. The story begins and ends with the rotations of a globe. In between, the author combines rigor and intuition to describe the basic objects of Lie theory: Lie algebras, matrix exponentiation, Lie brackets, maximal tori, homogeneous spaces, and roots. This second edition includes two new chapters that allow for an easier transition to the general theory of Lie groups.
Publisher: American Mathematical Soc.
ISBN: 1470427222
Category : Mathematics
Languages : en
Pages : 250
Book Description
Matrix groups touch an enormous spectrum of the mathematical arena. This textbook brings them into the undergraduate curriculum. It makes an excellent one-semester course for students familiar with linear and abstract algebra and prepares them for a graduate course on Lie groups. Matrix Groups for Undergraduates is concrete and example-driven, with geometric motivation and rigorous proofs. The story begins and ends with the rotations of a globe. In between, the author combines rigor and intuition to describe the basic objects of Lie theory: Lie algebras, matrix exponentiation, Lie brackets, maximal tori, homogeneous spaces, and roots. This second edition includes two new chapters that allow for an easier transition to the general theory of Lie groups.
The Theory of Matrices
Author: Feliks Ruvimovich Gantmakher
Publisher:
ISBN:
Category : Matrices
Languages : en
Pages : 296
Book Description
Publisher:
ISBN:
Category : Matrices
Languages : en
Pages : 296
Book Description
Special Matrices of Mathematical Physics
Author: Ruben Aldrovandi
Publisher: World Scientific
ISBN: 9810247087
Category : Science
Languages : en
Pages : 340
Book Description
This book expounds three special kinds of matrices that are of physical interest, centering on physical examples. Stochastic matrices describe dynamical systems of many different types, involving (or not) phenomena like transience, dissipation, ergodicity, nonequilibrium, and hypersensitivity to initial conditions. The main characteristic is growth by agglomeration, as in glass formation. Circulants are the building blocks of elementary Fourier analysis and provide a natural gateway to quantum mechanics and noncommutative geometry. Bell polynomials offer closed expressions for many formulas concerning Lie algebra invariants, differential geometry and real gases, and their matrices are instrumental in the study of chaotic mappings.
Publisher: World Scientific
ISBN: 9810247087
Category : Science
Languages : en
Pages : 340
Book Description
This book expounds three special kinds of matrices that are of physical interest, centering on physical examples. Stochastic matrices describe dynamical systems of many different types, involving (or not) phenomena like transience, dissipation, ergodicity, nonequilibrium, and hypersensitivity to initial conditions. The main characteristic is growth by agglomeration, as in glass formation. Circulants are the building blocks of elementary Fourier analysis and provide a natural gateway to quantum mechanics and noncommutative geometry. Bell polynomials offer closed expressions for many formulas concerning Lie algebra invariants, differential geometry and real gases, and their matrices are instrumental in the study of chaotic mappings.
An Introduction to Geometrical Physics
Author: Aldrovandi Ruben
Publisher: World Scientific
ISBN: 9813146834
Category : Science
Languages : en
Pages : 844
Book Description
This book focuses on the unifying power of the geometrical language in bringing together concepts from many different areas of physics, ranging from classical physics to the theories describing the four fundamental interactions of Nature -- gravitational, electromagnetic, strong nuclear, and weak nuclear. The book provides in a single volume a thorough introduction to topology and differential geometry, as well as many applications to both mathematical and physical problems. It is aimed as an elementary text and is intended for first year graduate students. In addition to the traditional contents of books on special and general relativities, this book discusses also some recent advances such as de Sitter invariant special relativity, teleparallel gravity and their implications in cosmology for those wishing to reach a higher level of understanding.
Publisher: World Scientific
ISBN: 9813146834
Category : Science
Languages : en
Pages : 844
Book Description
This book focuses on the unifying power of the geometrical language in bringing together concepts from many different areas of physics, ranging from classical physics to the theories describing the four fundamental interactions of Nature -- gravitational, electromagnetic, strong nuclear, and weak nuclear. The book provides in a single volume a thorough introduction to topology and differential geometry, as well as many applications to both mathematical and physical problems. It is aimed as an elementary text and is intended for first year graduate students. In addition to the traditional contents of books on special and general relativities, this book discusses also some recent advances such as de Sitter invariant special relativity, teleparallel gravity and their implications in cosmology for those wishing to reach a higher level of understanding.
Mathematical Physics
Author: Donald H. Menzel
Publisher: Courier Corporation
ISBN: 0486139107
Category : Science
Languages : en
Pages : 434
Book Description
Useful treatment of classical mechanics, electromagnetic theory, and relativity includes explanations of function theory, vectors, matrices, dyadics, tensors, partial differential equations, other advanced mathematical techniques. Nearly 200 problems with answers.
Publisher: Courier Corporation
ISBN: 0486139107
Category : Science
Languages : en
Pages : 434
Book Description
Useful treatment of classical mechanics, electromagnetic theory, and relativity includes explanations of function theory, vectors, matrices, dyadics, tensors, partial differential equations, other advanced mathematical techniques. Nearly 200 problems with answers.
Physics with MAPLE
Author: Frank Y. Wang
Publisher: John Wiley & Sons
ISBN: 3527618945
Category : Science
Languages : en
Pages : 625
Book Description
Written by an experienced physicist who is active in applying computer algebra to relativistic astrophysics and education, this is the resource for mathematical methods in physics using MapleTM and MathematicaTM. Through in-depth problems from core courses in the physics curriculum, the author guides students to apply analytical and numerical techniques in mathematical physics, and present the results in interactive graphics. Around 180 simulating exercises are included to facilitate learning by examples. This book is a must-have for students of physics, electrical and mechanical engineering, materials scientists, lecturers in physics, and university libraries. * Free online MapleTM material at http://www.wiley-vch.de/templates/pdf/maplephysics.zip * Free online MathematicaTM material at http://www.wiley-vch.de/templates/pdf/physicswithmathematica.zip * Solutions manual for lecturers available at www.wiley-vch.de/supplements/
Publisher: John Wiley & Sons
ISBN: 3527618945
Category : Science
Languages : en
Pages : 625
Book Description
Written by an experienced physicist who is active in applying computer algebra to relativistic astrophysics and education, this is the resource for mathematical methods in physics using MapleTM and MathematicaTM. Through in-depth problems from core courses in the physics curriculum, the author guides students to apply analytical and numerical techniques in mathematical physics, and present the results in interactive graphics. Around 180 simulating exercises are included to facilitate learning by examples. This book is a must-have for students of physics, electrical and mechanical engineering, materials scientists, lecturers in physics, and university libraries. * Free online MapleTM material at http://www.wiley-vch.de/templates/pdf/maplephysics.zip * Free online MathematicaTM material at http://www.wiley-vch.de/templates/pdf/physicswithmathematica.zip * Solutions manual for lecturers available at www.wiley-vch.de/supplements/