Lattice Path Combinatorics and Applications

Lattice Path Combinatorics and Applications PDF Author: George E. Andrews
Publisher: Springer
ISBN: 3030111024
Category : Mathematics
Languages : en
Pages : 443

Get Book Here

Book Description
The most recent methods in various branches of lattice path and enumerative combinatorics along with relevant applications are nicely grouped together and represented in this research contributed volume. Contributions to this edited volume will be mainly research articles however it will also include several captivating, expository articles (along with pictures) on the life and mathematical work of leading researchers in lattice path combinatorics and beyond. There will be four or five expository articles in memory of Shreeram Shankar Abhyankar and Philippe Flajolet and honoring George Andrews and Lajos Takács. There may be another brief article in memory of Professors Jagdish Narayan Srivastava and Joti Lal Jain. New research results include the kernel method developed by Flajolet and others for counting different classes of lattice paths continues to produce new results in counting lattice paths. The recent investigation of Fishburn numbers has led to interesting counting interpretations and a family of fascinating congruences. Formulas for new methods to obtain the number of Fq-rational points of Schubert varieties in Grassmannians continues to have research interest and will be presented here. Topics to be included are far reaching and will include lattice path enumeration, tilings, bijections between paths and other combinatoric structures, non-intersecting lattice paths, varieties, Young tableaux, partitions, enumerative combinatorics, discrete distributions, applications to queueing theory and other continuous time models, graph theory and applications. Many leading mathematicians who spoke at the conference from which this volume derives, are expected to send contributions including. This volume also presents the stimulating ideas of some exciting newcomers to the Lattice Path Combinatorics Conference series; “The 8th Conference on Lattice Path Combinatorics and Applications” provided opportunities for new collaborations; some of the products of these collaborations will also appear in this book. This book will have interest for researchers in lattice path combinatorics and enumerative combinatorics. This will include subsets of researchers in mathematics, statistics, operations research and computer science. The applications of the material covered in this edited volume extends beyond the primary audience to scholars interested queuing theory, graph theory, tiling, partitions, distributions, etc. An attractive bonus within our book is the collection of special articles describing the top recent researchers in this area of study and documenting the interesting history of who, when and how these beautiful combinatorial results were originally discovered.

Lattice Path Combinatorics and Applications

Lattice Path Combinatorics and Applications PDF Author: George E. Andrews
Publisher: Springer
ISBN: 3030111024
Category : Mathematics
Languages : en
Pages : 443

Get Book Here

Book Description
The most recent methods in various branches of lattice path and enumerative combinatorics along with relevant applications are nicely grouped together and represented in this research contributed volume. Contributions to this edited volume will be mainly research articles however it will also include several captivating, expository articles (along with pictures) on the life and mathematical work of leading researchers in lattice path combinatorics and beyond. There will be four or five expository articles in memory of Shreeram Shankar Abhyankar and Philippe Flajolet and honoring George Andrews and Lajos Takács. There may be another brief article in memory of Professors Jagdish Narayan Srivastava and Joti Lal Jain. New research results include the kernel method developed by Flajolet and others for counting different classes of lattice paths continues to produce new results in counting lattice paths. The recent investigation of Fishburn numbers has led to interesting counting interpretations and a family of fascinating congruences. Formulas for new methods to obtain the number of Fq-rational points of Schubert varieties in Grassmannians continues to have research interest and will be presented here. Topics to be included are far reaching and will include lattice path enumeration, tilings, bijections between paths and other combinatoric structures, non-intersecting lattice paths, varieties, Young tableaux, partitions, enumerative combinatorics, discrete distributions, applications to queueing theory and other continuous time models, graph theory and applications. Many leading mathematicians who spoke at the conference from which this volume derives, are expected to send contributions including. This volume also presents the stimulating ideas of some exciting newcomers to the Lattice Path Combinatorics Conference series; “The 8th Conference on Lattice Path Combinatorics and Applications” provided opportunities for new collaborations; some of the products of these collaborations will also appear in this book. This book will have interest for researchers in lattice path combinatorics and enumerative combinatorics. This will include subsets of researchers in mathematics, statistics, operations research and computer science. The applications of the material covered in this edited volume extends beyond the primary audience to scholars interested queuing theory, graph theory, tiling, partitions, distributions, etc. An attractive bonus within our book is the collection of special articles describing the top recent researchers in this area of study and documenting the interesting history of who, when and how these beautiful combinatorial results were originally discovered.

Lattice Path Combinatorics and Special Counting Sequences

Lattice Path Combinatorics and Special Counting Sequences PDF Author: Chunwei Song
Publisher: CRC Press
ISBN: 1040123414
Category : Mathematics
Languages : en
Pages : 120

Get Book Here

Book Description
This book endeavors to deepen our understanding of lattice path combinatorics, explore key types of special sequences, elucidate their interconnections, and concurrently champion the author's interpretation of the “combinatorial spirit”. The author intends to give an up-to-date introduction to the theory of lattice path combinatorics, its relation to those special counting sequences important in modern combinatorial studies, such as the Catalan, Schröder, Motzkin, Delannoy numbers, and their generalized versions. Brief discussions of applications of lattice path combinatorics to symmetric functions and connections to the theory of tableaux are also included. Meanwhile, the author also presents an interpretation of the "combinatorial spirit" (i.e., "counting without counting", bijective proofs, and understanding combinatorics from combinatorial structures internally, and more), hoping to shape the development of contemporary combinatorics. Lattice Path Combinatorics and Special Counting Sequences: From an Enumerative Perspective will appeal to graduate students and advanced undergraduates studying combinatorics, discrete mathematics, or computer science.

Analytic Combinatorics

Analytic Combinatorics PDF Author: Philippe Flajolet
Publisher: Cambridge University Press
ISBN: 1139477161
Category : Mathematics
Languages : en
Pages : 825

Get Book Here

Book Description
Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.

NBS Special Publication

NBS Special Publication PDF Author:
Publisher:
ISBN:
Category : Weights and measures
Languages : en
Pages : 790

Get Book Here

Book Description


Lattice Path Counting and Applications

Lattice Path Counting and Applications PDF Author: Gopal Mohanty
Publisher: Academic Press
ISBN: 1483218805
Category : Mathematics
Languages : en
Pages : 200

Get Book Here

Book Description
Probability and Mathematical Statistics: A Series of Monographs and Textbooks: Lattice Path Counting and Applications focuses on the principles, methodologies, and approaches involved in lattice path counting and applications, including vector representation, random walks, and rank order statistics. The book first underscores the simple and general boundaries of path counting. Topics include types of diagonal steps and a correspondence, paths within general boundaries, higher dimensional paths, vector representation, compositions, and domination, recurrence and generating function method, and reflection principle. The text then examines invariance and fluctuation and random walk and rank order statistics. Discussions focus on random walks, rank order statistics, Chung-Feller theorems, and Sparre Andersen's equivalence. The manuscript takes a look at convolution identities and inverse relations and discrete distributions, queues, trees, and search codes, as well as discrete distributions and a correlated random walk, trees and search codes, convolution identities, and orthogonal relations and inversion formulas. The text is a valuable reference for mathematicians and researchers interested in in lattice path counting and applications.

Mathematical Reviews

Mathematical Reviews PDF Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 1524

Get Book Here

Book Description


Bulletin of the Institute of Combinatorics and Its Applications

Bulletin of the Institute of Combinatorics and Its Applications PDF Author:
Publisher:
ISBN:
Category : Combinatorial analysis
Languages : en
Pages : 388

Get Book Here

Book Description


Combinatorics: The Art of Counting

Combinatorics: The Art of Counting PDF Author: Bruce E. Sagan
Publisher: American Mathematical Soc.
ISBN: 1470460327
Category : Education
Languages : en
Pages : 304

Get Book Here

Book Description
This book is a gentle introduction to the enumerative part of combinatorics suitable for study at the advanced undergraduate or beginning graduate level. In addition to covering all the standard techniques for counting combinatorial objects, the text contains material from the research literature which has never before appeared in print, such as the use of quotient posets to study the Möbius function and characteristic polynomial of a partially ordered set, or the connection between quasisymmetric functions and pattern avoidance. The book assumes minimal background, and a first course in abstract algebra should suffice. The exposition is very reader friendly: keeping a moderate pace, using lots of examples, emphasizing recurring themes, and frankly expressing the delight the author takes in mathematics in general and combinatorics in particular.

Bayesian Nonparametrics

Bayesian Nonparametrics PDF Author: Nils Lid Hjort
Publisher: Cambridge University Press
ISBN: 1139484605
Category : Mathematics
Languages : en
Pages : 309

Get Book Here

Book Description
Bayesian nonparametrics works - theoretically, computationally. The theory provides highly flexible models whose complexity grows appropriately with the amount of data. Computational issues, though challenging, are no longer intractable. All that is needed is an entry point: this intelligent book is the perfect guide to what can seem a forbidding landscape. Tutorial chapters by Ghosal, Lijoi and Prünster, Teh and Jordan, and Dunson advance from theory, to basic models and hierarchical modeling, to applications and implementation, particularly in computer science and biostatistics. These are complemented by companion chapters by the editors and Griffin and Quintana, providing additional models, examining computational issues, identifying future growth areas, and giving links to related topics. This coherent text gives ready access both to underlying principles and to state-of-the-art practice. Specific examples are drawn from information retrieval, NLP, machine vision, computational biology, biostatistics, and bioinformatics.

Encyclopedia of Statistical Sciences: In-L

Encyclopedia of Statistical Sciences: In-L PDF Author:
Publisher:
ISBN:
Category : Statistics
Languages : en
Pages : 688

Get Book Here

Book Description