Author:
Publisher:
ISBN:
Category : Aerodynamics
Languages : en
Pages : 564
Book Description
"This lecture series is devoted to major aspects of aerofoil design both for aeronautical and turbomachine application. These include: (1) optimisation of target pressure and velocity distribution. Both direct optimisation resulting from an inverse boundary layer calculation and an iterative optimisation of the loses are presented. (2) aerofoil design by means of inverse methods. This ranges from simple parametric definitions of two- dimensional cross sections to a detailed numerical definition of three dimensional shapes. blade or airfoil designs are normally made in two steps, and the lectures are accordingly grouped into two parts. First, optimisation of target pressure and velocity distributions are discussed taking into account the required performance and the lost mechanisms in the boundary layer. Both direct optimisation resulting from an inverse boundary layer calculation, and an iterative optimisation by minimisation of the losses are presented. It is clear from both procedures that inclusion of off-design operation is one of the greatest difficulties involved in blade or airfoil operation. The second part gives an overview of the numerous inverse blade design methods that have been developed both for turbomachinery and aeronautical applications. This ranges from simple parameter definitions of two-dimensional cross-sections to the full three-dimensional definition of wings and blade channels."--DTIC.
Special Course on Inverse Methods for Airfoil Design for Aeronautical and Turbomachinery Applications
Author:
Publisher:
ISBN:
Category : Aerodynamics
Languages : en
Pages : 564
Book Description
"This lecture series is devoted to major aspects of aerofoil design both for aeronautical and turbomachine application. These include: (1) optimisation of target pressure and velocity distribution. Both direct optimisation resulting from an inverse boundary layer calculation and an iterative optimisation of the loses are presented. (2) aerofoil design by means of inverse methods. This ranges from simple parametric definitions of two- dimensional cross sections to a detailed numerical definition of three dimensional shapes. blade or airfoil designs are normally made in two steps, and the lectures are accordingly grouped into two parts. First, optimisation of target pressure and velocity distributions are discussed taking into account the required performance and the lost mechanisms in the boundary layer. Both direct optimisation resulting from an inverse boundary layer calculation, and an iterative optimisation by minimisation of the losses are presented. It is clear from both procedures that inclusion of off-design operation is one of the greatest difficulties involved in blade or airfoil operation. The second part gives an overview of the numerous inverse blade design methods that have been developed both for turbomachinery and aeronautical applications. This ranges from simple parameter definitions of two-dimensional cross-sections to the full three-dimensional definition of wings and blade channels."--DTIC.
Publisher:
ISBN:
Category : Aerodynamics
Languages : en
Pages : 564
Book Description
"This lecture series is devoted to major aspects of aerofoil design both for aeronautical and turbomachine application. These include: (1) optimisation of target pressure and velocity distribution. Both direct optimisation resulting from an inverse boundary layer calculation and an iterative optimisation of the loses are presented. (2) aerofoil design by means of inverse methods. This ranges from simple parametric definitions of two- dimensional cross sections to a detailed numerical definition of three dimensional shapes. blade or airfoil designs are normally made in two steps, and the lectures are accordingly grouped into two parts. First, optimisation of target pressure and velocity distributions are discussed taking into account the required performance and the lost mechanisms in the boundary layer. Both direct optimisation resulting from an inverse boundary layer calculation, and an iterative optimisation by minimisation of the losses are presented. It is clear from both procedures that inclusion of off-design operation is one of the greatest difficulties involved in blade or airfoil operation. The second part gives an overview of the numerous inverse blade design methods that have been developed both for turbomachinery and aeronautical applications. This ranges from simple parameter definitions of two-dimensional cross-sections to the full three-dimensional definition of wings and blade channels."--DTIC.
Aeronautical Engineering
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 538
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 538
Book Description
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1572
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1572
Book Description
An Approach to Constrained Aerodynamic Design with Application to Airfoils
Author: Richard Lawson Campbell
Publisher:
ISBN:
Category : Aerofoils
Languages : en
Pages : 28
Book Description
Publisher:
ISBN:
Category : Aerofoils
Languages : en
Pages : 28
Book Description
New Design Concepts for High Speed Air Transport
Author: H. Sobieczky
Publisher: Springer Science & Business Media
ISBN: 9783211828151
Category : Technology & Engineering
Languages : en
Pages : 348
Book Description
This book presents the challenges, the tools and the concepts for developing economically viable high speed civil transport aircraft under environmental constraints. Computational tools for aircraft design and optimization are outlined and application in an industrial environment is shown for new and innovative case studies.
Publisher: Springer Science & Business Media
ISBN: 9783211828151
Category : Technology & Engineering
Languages : en
Pages : 348
Book Description
This book presents the challenges, the tools and the concepts for developing economically viable high speed civil transport aircraft under environmental constraints. Computational tools for aircraft design and optimization are outlined and application in an industrial environment is shown for new and innovative case studies.
Recent Development of Aerodynamic Design Methodologies
Author: Kozo Fujii
Publisher: Springer Science & Business Media
ISBN: 3322899527
Category : Technology & Engineering
Languages : en
Pages : 228
Book Description
Computational Fluid Dynamics (CFD) has made remarkable progress in the last two decades and is becoming an important, if not inevitable, analytical tool for both fundamental and practical fluid dynamics research. The analysis of flow fields is important in the sense that it improves the researcher's understanding of the flow features. CFD analysis also indirectly helps the design of new aircraft and/or spacecraft. However, design methodologies are the real need for the development of aircraft or spacecraft. They directly contribute to the design process and can significantly shorten the design cycle. Although quite a few publications have been written on this subject, most of the methods proposed were not used in practice in the past due to an immature research level and restrictions due to the inadequate computing capabilities. With the progress of high-speed computers, the time has come for such methods to be used practically. There is strong evidence of a growing interest in the development and use of aerodynamic inverse design and optimization techniques. This is true, not only for aerospace industries, but also for any industries requiring fluid dynamic design. This clearly shows the matured engineering need for optimum aerodynamic shape design methodologies. Therefore, it seems timely to publish a book in which eminent researchers in this area can elaborate on their research efforts and discuss it in conjunction with other efforts.
Publisher: Springer Science & Business Media
ISBN: 3322899527
Category : Technology & Engineering
Languages : en
Pages : 228
Book Description
Computational Fluid Dynamics (CFD) has made remarkable progress in the last two decades and is becoming an important, if not inevitable, analytical tool for both fundamental and practical fluid dynamics research. The analysis of flow fields is important in the sense that it improves the researcher's understanding of the flow features. CFD analysis also indirectly helps the design of new aircraft and/or spacecraft. However, design methodologies are the real need for the development of aircraft or spacecraft. They directly contribute to the design process and can significantly shorten the design cycle. Although quite a few publications have been written on this subject, most of the methods proposed were not used in practice in the past due to an immature research level and restrictions due to the inadequate computing capabilities. With the progress of high-speed computers, the time has come for such methods to be used practically. There is strong evidence of a growing interest in the development and use of aerodynamic inverse design and optimization techniques. This is true, not only for aerospace industries, but also for any industries requiring fluid dynamic design. This clearly shows the matured engineering need for optimum aerodynamic shape design methodologies. Therefore, it seems timely to publish a book in which eminent researchers in this area can elaborate on their research efforts and discuss it in conjunction with other efforts.
Linear and Nonlinear Conjugate Gradient-related Methods
Author: Loyce M. Adams
Publisher: SIAM
ISBN: 9780898713763
Category : Mathematics
Languages : en
Pages : 186
Book Description
Proceedings of the AMS-IMS-SIAM Summer Research Conference held at the University of Washington, July 1995.
Publisher: SIAM
ISBN: 9780898713763
Category : Mathematics
Languages : en
Pages : 186
Book Description
Proceedings of the AMS-IMS-SIAM Summer Research Conference held at the University of Washington, July 1995.
NASA SP.
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 654
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 654
Book Description
Inverse Design and Optimisation Methods
Author:
Publisher:
ISBN:
Category : Aerodynamics
Languages : en
Pages : 426
Book Description
Publisher:
ISBN:
Category : Aerodynamics
Languages : en
Pages : 426
Book Description
AGARD Report
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 288
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 288
Book Description