Spatiotemporal Random Fields

Spatiotemporal Random Fields PDF Author: George Christakos
Publisher: Elsevier
ISBN: 0128030321
Category : Science
Languages : en
Pages : 698

Get Book Here

Book Description
Spatiotemporal Random Fields: Theory and Applications, Second Edition, provides readers with a new and updated edition of the text that explores the application of spatiotemporal random field models to problems in ocean, earth, and atmospheric sciences, spatiotemporal statistics, and geostatistics, among others. The new edition features considerable detail of spatiotemporal random field theory, including ordinary and generalized models, as well as space-time homostationary, isostationary and hetrogeneous approaches. Presenting new theoretical and applied results, with particular emphasis on space-time determination and interpretation, spatiotemporal analysis and modeling, random field geometry, random functionals, probability law, and covariance construction techniques, this book highlights the key role of space-time metrics, the physical interpretation of stochastic differential equations, higher-order space-time variability functions, the validity of major theoretical assumptions in real-world practice (covariance positive-definiteness, metric-adequacy etc.), and the emergence of interdisciplinary phenomena in conditions of multi-sourced real-world uncertainty. - Contains applications in the form of examples and case studies, providing readers with first-hand experiences - Presents an easy to follow narrative which progresses from simple concepts to more challenging ideas - Includes significant updates from the previous edition, including a focus on new theoretical and applied results

Spatiotemporal Random Fields

Spatiotemporal Random Fields PDF Author: George Christakos
Publisher: Elsevier
ISBN: 0128030321
Category : Science
Languages : en
Pages : 698

Get Book Here

Book Description
Spatiotemporal Random Fields: Theory and Applications, Second Edition, provides readers with a new and updated edition of the text that explores the application of spatiotemporal random field models to problems in ocean, earth, and atmospheric sciences, spatiotemporal statistics, and geostatistics, among others. The new edition features considerable detail of spatiotemporal random field theory, including ordinary and generalized models, as well as space-time homostationary, isostationary and hetrogeneous approaches. Presenting new theoretical and applied results, with particular emphasis on space-time determination and interpretation, spatiotemporal analysis and modeling, random field geometry, random functionals, probability law, and covariance construction techniques, this book highlights the key role of space-time metrics, the physical interpretation of stochastic differential equations, higher-order space-time variability functions, the validity of major theoretical assumptions in real-world practice (covariance positive-definiteness, metric-adequacy etc.), and the emergence of interdisciplinary phenomena in conditions of multi-sourced real-world uncertainty. - Contains applications in the form of examples and case studies, providing readers with first-hand experiences - Presents an easy to follow narrative which progresses from simple concepts to more challenging ideas - Includes significant updates from the previous edition, including a focus on new theoretical and applied results

Random Field Models in Earth Sciences

Random Field Models in Earth Sciences PDF Author: George Christakos
Publisher: Elsevier
ISBN: 1483288307
Category : Science
Languages : en
Pages : 503

Get Book Here

Book Description
This book is about modeling as a prinicipal component of scientific investigations. In general terms, modeling is the funamental process of combining intellectual creativity with physical knowledge and mathematical techniques in order to learn the properties of the mechanisms underlying a physical phenomenon and make predictions. The book focuses on a specific class of models, namely, random field models and certain of their physical applications in the context of a stochastic data analysis and processing research program. The term application is considered here in the sense wherein the mathematical random field model is shaping, but is also being shaped by, its objects.This book explores the application of random field models and stochastic data processing to problems in hydrogeology, geostatistics, climate modeling, and oil reservoir engineering, among others Researchers in the geosciences who work with models of natural processes will find discussion of; - Spatiotemporal random fields - Space transformation - Multidimensional estimation - Simulation - Sampling design - Stochastic partial differential equations

Spatiotemporal Analysis of Extreme Hydrological Events

Spatiotemporal Analysis of Extreme Hydrological Events PDF Author: Gerald Corzo
Publisher: Elsevier
ISBN: 0128117311
Category : Science
Languages : en
Pages : 194

Get Book Here

Book Description
Spatio-temporal Analysis of Extreme Hydrological Events offers an extensive view of the experiences and applications of the latest developments and methodologies for analyzing and understanding extreme environmental and hydrological events. The book addresses the topic using spatio-temporal methods, such as space-time geostatistics, machine learning, statistical theory, hydrological modelling, neural network and evolutionary algorithms. This important resource for both hydrologists and statisticians interested in the framework of spatial and temporal analysis of hydrological events will provide users with an enhanced understanding of the relationship between magnitude, dynamics and the probability of extreme hydrological events. - Presents spatio-temporal processes, including multivariate dynamic modelling - Provides varying methodological approaches, giving the readers multiple hydrological modelling information to use in their work - Includes a variety of case studies making the context of the book relatable to everyday working situations

Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA

Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA PDF Author: Elias T. Krainski
Publisher: CRC Press
ISBN: 0429629850
Category : Mathematics
Languages : en
Pages : 284

Get Book Here

Book Description
Modeling spatial and spatio-temporal continuous processes is an important and challenging problem in spatial statistics. Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA describes in detail the stochastic partial differential equations (SPDE) approach for modeling continuous spatial processes with a Matérn covariance, which has been implemented using the integrated nested Laplace approximation (INLA) in the R-INLA package. Key concepts about modeling spatial processes and the SPDE approach are explained with examples using simulated data and real applications. This book has been authored by leading experts in spatial statistics, including the main developers of the INLA and SPDE methodologies and the R-INLA package. It also includes a wide range of applications: * Spatial and spatio-temporal models for continuous outcomes * Analysis of spatial and spatio-temporal point patterns * Coregionalization spatial and spatio-temporal models * Measurement error spatial models * Modeling preferential sampling * Spatial and spatio-temporal models with physical barriers * Survival analysis with spatial effects * Dynamic space-time regression * Spatial and spatio-temporal models for extremes * Hurdle models with spatial effects * Penalized Complexity priors for spatial models All the examples in the book are fully reproducible. Further information about this book, as well as the R code and datasets used, is available from the book website at http://www.r-inla.org/spde-book. The tools described in this book will be useful to researchers in many fields such as biostatistics, spatial statistics, environmental sciences, epidemiology, ecology and others. Graduate and Ph.D. students will also find this book and associated files a valuable resource to learn INLA and the SPDE approach for spatial modeling.

Random Fields for Spatial Data Modeling

Random Fields for Spatial Data Modeling PDF Author: Dionissios T. Hristopulos
Publisher: Springer Nature
ISBN: 9402419187
Category : Science
Languages : en
Pages : 884

Get Book Here

Book Description
This book provides an inter-disciplinary introduction to the theory of random fields and its applications. Spatial models and spatial data analysis are integral parts of many scientific and engineering disciplines. Random fields provide a general theoretical framework for the development of spatial models and their applications in data analysis. The contents of the book include topics from classical statistics and random field theory (regression models, Gaussian random fields, stationarity, correlation functions) spatial statistics (variogram estimation, model inference, kriging-based prediction) and statistical physics (fractals, Ising model, simulated annealing, maximum entropy, functional integral representations, perturbation and variational methods). The book also explores links between random fields, Gaussian processes and neural networks used in machine learning. Connections with applied mathematics are highlighted by means of models based on stochastic partial differential equations. An interlude on autoregressive time series provides useful lower-dimensional analogies and a connection with the classical linear harmonic oscillator. Other chapters focus on non-Gaussian random fields and stochastic simulation methods. The book also presents results based on the author’s research on Spartan random fields that were inspired by statistical field theories originating in physics. The equivalence of the one-dimensional Spartan random field model with the classical, linear, damped harmonic oscillator driven by white noise is highlighted. Ideas with potentially significant computational gains for the processing of big spatial data are presented and discussed. The final chapter concludes with a description of the Karhunen-Loève expansion of the Spartan model. The book will appeal to engineers, physicists, and geoscientists whose research involves spatial models or spatial data analysis. Anyone with background in probability and statistics can read at least parts of the book. Some chapters will be easier to understand by readers familiar with differential equations and Fourier transforms.

Spatio-Temporal Methods in Environmental Epidemiology

Spatio-Temporal Methods in Environmental Epidemiology PDF Author: Gavin Shaddick
Publisher: CRC Press
ISBN: 1482237040
Category : Mathematics
Languages : en
Pages : 383

Get Book Here

Book Description
Teaches Students How to Perform Spatio-Temporal Analyses within Epidemiological StudiesSpatio-Temporal Methods in Environmental Epidemiology is the first book of its kind to specifically address the interface between environmental epidemiology and spatio-temporal modeling. In response to the growing need for collaboration between statisticians and

Spatio-Temporal Statistics with R

Spatio-Temporal Statistics with R PDF Author: Christopher K. Wikle
Publisher: CRC Press
ISBN: 0429649789
Category : Mathematics
Languages : en
Pages : 397

Get Book Here

Book Description
The world is becoming increasingly complex, with larger quantities of data available to be analyzed. It so happens that much of these "big data" that are available are spatio-temporal in nature, meaning that they can be indexed by their spatial locations and time stamps. Spatio-Temporal Statistics with R provides an accessible introduction to statistical analysis of spatio-temporal data, with hands-on applications of the statistical methods using R Labs found at the end of each chapter. The book: Gives a step-by-step approach to analyzing spatio-temporal data, starting with visualization, then statistical modelling, with an emphasis on hierarchical statistical models and basis function expansions, and finishing with model evaluation Provides a gradual entry to the methodological aspects of spatio-temporal statistics Provides broad coverage of using R as well as "R Tips" throughout. Features detailed examples and applications in end-of-chapter Labs Features "Technical Notes" throughout to provide additional technical detail where relevant Supplemented by a website featuring the associated R package, data, reviews, errata, a discussion forum, and more The book fills a void in the literature and available software, providing a bridge for students and researchers alike who wish to learn the basics of spatio-temporal statistics. It is written in an informal style and functions as a down-to-earth introduction to the subject. Any reader familiar with calculus-based probability and statistics, and who is comfortable with basic matrix-algebra representations of statistical models, would find this book easy to follow. The goal is to give as many people as possible the tools and confidence to analyze spatio-temporal data.

Statistics for Spatio-Temporal Data

Statistics for Spatio-Temporal Data PDF Author: Noel Cressie
Publisher: John Wiley & Sons
ISBN: 1119243041
Category : Mathematics
Languages : en
Pages : 612

Get Book Here

Book Description
Winner of the 2013 DeGroot Prize. A state-of-the-art presentation of spatio-temporal processes, bridging classic ideas with modern hierarchical statistical modeling concepts and the latest computational methods Noel Cressie and Christopher K. Wikle, are also winners of the 2011 PROSE Award in the Mathematics category, for the book “Statistics for Spatio-Temporal Data” (2011), published by John Wiley and Sons. (The PROSE awards, for Professional and Scholarly Excellence, are given by the Association of American Publishers, the national trade association of the US book publishing industry.) Statistics for Spatio-Temporal Data has now been reprinted with small corrections to the text and the bibliography. The overall content and pagination of the new printing remains the same; the difference comes in the form of corrections to typographical errors, editing of incomplete and missing references, and some updated spatio-temporal interpretations. From understanding environmental processes and climate trends to developing new technologies for mapping public-health data and the spread of invasive-species, there is a high demand for statistical analyses of data that take spatial, temporal, and spatio-temporal information into account. Statistics for Spatio-Temporal Data presents a systematic approach to key quantitative techniques that incorporate the latest advances in statistical computing as well as hierarchical, particularly Bayesian, statistical modeling, with an emphasis on dynamical spatio-temporal models. Cressie and Wikle supply a unique presentation that incorporates ideas from the areas of time series and spatial statistics as well as stochastic processes. Beginning with separate treatments of temporal data and spatial data, the book combines these concepts to discuss spatio-temporal statistical methods for understanding complex processes. Topics of coverage include: Exploratory methods for spatio-temporal data, including visualization, spectral analysis, empirical orthogonal function analysis, and LISAs Spatio-temporal covariance functions, spatio-temporal kriging, and time series of spatial processes Development of hierarchical dynamical spatio-temporal models (DSTMs), with discussion of linear and nonlinear DSTMs and computational algorithms for their implementation Quantifying and exploring spatio-temporal variability in scientific applications, including case studies based on real-world environmental data Throughout the book, interesting applications demonstrate the relevance of the presented concepts. Vivid, full-color graphics emphasize the visual nature of the topic, and a related FTP site contains supplementary material. Statistics for Spatio-Temporal Data is an excellent book for a graduate-level course on spatio-temporal statistics. It is also a valuable reference for researchers and practitioners in the fields of applied mathematics, engineering, and the environmental and health sciences.

Graphical Models, Exponential Families, and Variational Inference

Graphical Models, Exponential Families, and Variational Inference PDF Author: Martin J. Wainwright
Publisher: Now Publishers Inc
ISBN: 1601981848
Category : Computers
Languages : en
Pages : 324

Get Book Here

Book Description
The core of this paper is a general set of variational principles for the problems of computing marginal probabilities and modes, applicable to multivariate statistical models in the exponential family.

Spatiotemporal Environmental Health Modelling: A Tractatus Stochasticus

Spatiotemporal Environmental Health Modelling: A Tractatus Stochasticus PDF Author: George Christakos
Publisher: Springer Science & Business Media
ISBN: 1475728115
Category : Medical
Languages : en
Pages : 411

Get Book Here

Book Description
Spatiotemporal Environmental Health Modelling: A Tractatus Stochasticus provides a holistic, conceptual and quantitative framework for Environmental Health Modelling in space-time. The holistic framework integrates two aspects of Environmental Health Science that have been previously treated separately: the environmental aspect, which involves the natural processes that bring about human exposure to harmful substances; and the health aspect, which focuses on the interactions of these substances with the human body. Some of the fundamental issues addressed in this work include variability, scale, uncertainty, and space-time connectivity. These topics are important in the characterization of natural systems and health processes. Spatiotemporal Environmental Health Modelling: A Tractatus Stochasticus explains why modern stochastics is the appropriate mechanical vehicle for addressing such issues in a rigorous way. In particular, modern stochastics incorporates concepts and methods from probability, classical statistics, geostatistics, statistical mechanics and field theory. The authors present a synthetic view of environmental health that embraces all of the various components and focuses on their mutual interactions. Spatiotemporal Environmental Health Modeling: A Tractatus Stochasticus includes new material on Bayesian maximum entropy estimation techniques and space-time random field estimation methods. The authors show why these methods have clear advantages over the classical geostatistical estimation procedures and how they can be used to provide accurate space-time maps of environmental health processes. Also included are expositions of diagrammatic perturbation and renormalization group analysis, which have not been previously discussed within the context of Environmental Health. Finally, the authors present stochastic indicators that can be used for large-scale characterization of contamination and investigations of health effects at the microscopic level. This book will be a useful reference to both researchers and practitioners of Environmental Health Sciences. It will appeal specifically to environmental engineers, geographers, geostatisticians, earth scientists, toxicologists, epidemiologists, pharmacologists, applied mathematicians, physicists and biologists.