Author: Guangqing Chi
Publisher: SAGE Publications
ISBN: 1544302053
Category : Social Science
Languages : en
Pages : 229
Book Description
Spatial Regression Models for the Social Sciences shows researchers and students how to work with spatial data without the need for advanced mathematical statistics. Focusing on the methods that are commonly used by social scientists, Guangqing Chi and Jun Zhu explain what each method is and when and how to apply it by connecting it to social science research topics. Throughout the book they use the same social science example to demonstrate applications of each method and what the results can tell us.
Spatial Regression Models for the Social Sciences
Author: Guangqing Chi
Publisher: SAGE Publications
ISBN: 1544302053
Category : Social Science
Languages : en
Pages : 229
Book Description
Spatial Regression Models for the Social Sciences shows researchers and students how to work with spatial data without the need for advanced mathematical statistics. Focusing on the methods that are commonly used by social scientists, Guangqing Chi and Jun Zhu explain what each method is and when and how to apply it by connecting it to social science research topics. Throughout the book they use the same social science example to demonstrate applications of each method and what the results can tell us.
Publisher: SAGE Publications
ISBN: 1544302053
Category : Social Science
Languages : en
Pages : 229
Book Description
Spatial Regression Models for the Social Sciences shows researchers and students how to work with spatial data without the need for advanced mathematical statistics. Focusing on the methods that are commonly used by social scientists, Guangqing Chi and Jun Zhu explain what each method is and when and how to apply it by connecting it to social science research topics. Throughout the book they use the same social science example to demonstrate applications of each method and what the results can tell us.
Spatial Analysis for the Social Sciences
Author: David Darmofal
Publisher: Cambridge University Press
ISBN: 0521888263
Category : Mathematics
Languages : en
Pages : 263
Book Description
This book shows how to model the spatial interactions between actors that are at the heart of the social sciences.
Publisher: Cambridge University Press
ISBN: 0521888263
Category : Mathematics
Languages : en
Pages : 263
Book Description
This book shows how to model the spatial interactions between actors that are at the heart of the social sciences.
Spatial Regression Models for the Social Sciences
Author: Guangqing Chi
Publisher: SAGE Publications
ISBN: 1544302088
Category : Social Science
Languages : en
Pages : 273
Book Description
Space and geography are important aspects of social science research in fields such as criminology, sociology, political science, and public health. Many social scientists are interested in the spatial clustering of various behaviors and events. There has been a rapid development of interest in regression methods for analyzing spatial data over recent years, but little available on the topic that is aimed at graduate students and advanced undergraduate classes in the social sciences (most texts are for the natural sciences, or regional science, or economics, and require a good understanding of advanced statistics and probability theory). Spatial Regression Models for the Social Sciences fills the gap, and focuses on the methods that are commonly used by social scientists. Each spatial regression method is introduced in the same way. Guangqing Chi and Jun Zhu explain what each method is and when and how to apply it, by connecting it to social science research topics. They try to avoid mathematical formulas and symbols as much as possible. Secondly, throughout the book they use the same social science example to demonstrate applications of each method and what the results can tell us. Spatial Regression Models for the Social Sciences provides comprehensive coverage of spatial regression methods for social scientists and introduces the methods in an easy-to-follow manner.
Publisher: SAGE Publications
ISBN: 1544302088
Category : Social Science
Languages : en
Pages : 273
Book Description
Space and geography are important aspects of social science research in fields such as criminology, sociology, political science, and public health. Many social scientists are interested in the spatial clustering of various behaviors and events. There has been a rapid development of interest in regression methods for analyzing spatial data over recent years, but little available on the topic that is aimed at graduate students and advanced undergraduate classes in the social sciences (most texts are for the natural sciences, or regional science, or economics, and require a good understanding of advanced statistics and probability theory). Spatial Regression Models for the Social Sciences fills the gap, and focuses on the methods that are commonly used by social scientists. Each spatial regression method is introduced in the same way. Guangqing Chi and Jun Zhu explain what each method is and when and how to apply it, by connecting it to social science research topics. They try to avoid mathematical formulas and symbols as much as possible. Secondly, throughout the book they use the same social science example to demonstrate applications of each method and what the results can tell us. Spatial Regression Models for the Social Sciences provides comprehensive coverage of spatial regression methods for social scientists and introduces the methods in an easy-to-follow manner.
Spatial Econometrics: Methods and Models
Author: L. Anselin
Publisher: Springer Science & Business Media
ISBN: 9401577994
Category : Business & Economics
Languages : en
Pages : 295
Book Description
Spatial econometrics deals with spatial dependence and spatial heterogeneity, critical aspects of the data used by regional scientists. These characteristics may cause standard econometric techniques to become inappropriate. In this book, I combine several recent research results to construct a comprehensive approach to the incorporation of spatial effects in econometrics. My primary focus is to demonstrate how these spatial effects can be considered as special cases of general frameworks in standard econometrics, and to outline how they necessitate a separate set of methods and techniques, encompassed within the field of spatial econometrics. My viewpoint differs from that taken in the discussion of spatial autocorrelation in spatial statistics - e.g., most recently by Cliff and Ord (1981) and Upton and Fingleton (1985) - in that I am mostly concerned with the relevance of spatial effects on model specification, estimation and other inference, in what I caIl a model-driven approach, as opposed to a data-driven approach in spatial statistics. I attempt to combine a rigorous econometric perspective with a comprehensive treatment of methodological issues in spatial analysis.
Publisher: Springer Science & Business Media
ISBN: 9401577994
Category : Business & Economics
Languages : en
Pages : 295
Book Description
Spatial econometrics deals with spatial dependence and spatial heterogeneity, critical aspects of the data used by regional scientists. These characteristics may cause standard econometric techniques to become inappropriate. In this book, I combine several recent research results to construct a comprehensive approach to the incorporation of spatial effects in econometrics. My primary focus is to demonstrate how these spatial effects can be considered as special cases of general frameworks in standard econometrics, and to outline how they necessitate a separate set of methods and techniques, encompassed within the field of spatial econometrics. My viewpoint differs from that taken in the discussion of spatial autocorrelation in spatial statistics - e.g., most recently by Cliff and Ord (1981) and Upton and Fingleton (1985) - in that I am mostly concerned with the relevance of spatial effects on model specification, estimation and other inference, in what I caIl a model-driven approach, as opposed to a data-driven approach in spatial statistics. I attempt to combine a rigorous econometric perspective with a comprehensive treatment of methodological issues in spatial analysis.
Spatial Regression Analysis Using Eigenvector Spatial Filtering
Author: Daniel Griffith
Publisher: Academic Press
ISBN: 0128156929
Category : Business & Economics
Languages : en
Pages : 288
Book Description
Spatial Regression Analysis Using Eigenvector Spatial Filtering provides theoretical foundations and guides practical implementation of the Moran eigenvector spatial filtering (MESF) technique. MESF is a novel and powerful spatial statistical methodology that allows spatial scientists to account for spatial autocorrelation in their georeferenced data analyses. Its appeal is in its simplicity, yet its implementation drawbacks include serious complexities associated with constructing an eigenvector spatial filter. This book discusses MESF specifications for various intermediate-level topics, including spatially varying coefficients models, (non) linear mixed models, local spatial autocorrelation, space-time models, and spatial interaction models. Spatial Regression Analysis Using Eigenvector Spatial Filtering is accompanied by sample R codes and a Windows application with illustrative datasets so that readers can replicate the examples in the book and apply the methodology to their own application projects. It also includes a Foreword by Pierre Legendre. - Reviews the uses of ESF across linear regression, generalized linear regression, spatial autocorrelation measurement, and spatially varying coefficient models - Includes computer code and template datasets for further modeling - Provides comprehensive coverage of related concepts in spatial data analysis and spatial statistics
Publisher: Academic Press
ISBN: 0128156929
Category : Business & Economics
Languages : en
Pages : 288
Book Description
Spatial Regression Analysis Using Eigenvector Spatial Filtering provides theoretical foundations and guides practical implementation of the Moran eigenvector spatial filtering (MESF) technique. MESF is a novel and powerful spatial statistical methodology that allows spatial scientists to account for spatial autocorrelation in their georeferenced data analyses. Its appeal is in its simplicity, yet its implementation drawbacks include serious complexities associated with constructing an eigenvector spatial filter. This book discusses MESF specifications for various intermediate-level topics, including spatially varying coefficients models, (non) linear mixed models, local spatial autocorrelation, space-time models, and spatial interaction models. Spatial Regression Analysis Using Eigenvector Spatial Filtering is accompanied by sample R codes and a Windows application with illustrative datasets so that readers can replicate the examples in the book and apply the methodology to their own application projects. It also includes a Foreword by Pierre Legendre. - Reviews the uses of ESF across linear regression, generalized linear regression, spatial autocorrelation measurement, and spatially varying coefficient models - Includes computer code and template datasets for further modeling - Provides comprehensive coverage of related concepts in spatial data analysis and spatial statistics
Introduction to Spatial Econometrics
Author: James LeSage
Publisher: CRC Press
ISBN: 1420064258
Category : Business & Economics
Languages : en
Pages : 362
Book Description
Although interest in spatial regression models has surged in recent years, a comprehensive, up-to-date text on these approaches does not exist. Filling this void, Introduction to Spatial Econometrics presents a variety of regression methods used to analyze spatial data samples that violate the traditional assumption of independence between observat
Publisher: CRC Press
ISBN: 1420064258
Category : Business & Economics
Languages : en
Pages : 362
Book Description
Although interest in spatial regression models has surged in recent years, a comprehensive, up-to-date text on these approaches does not exist. Filling this void, Introduction to Spatial Econometrics presents a variety of regression methods used to analyze spatial data samples that violate the traditional assumption of independence between observat
GIS and Spatial Analysis for the Social Sciences
Author: Robert Nash Parker
Publisher: Routledge
ISBN: 1135857598
Category : Political Science
Languages : en
Pages : 267
Book Description
This is the first book to provide sociologists, criminologists, political scientists, and other social scientists with the methodological logic and techniques for doing spatial analysis in their chosen fields of inquiry. The book contains a wealth of examples as to why these techniques are worth doing, over and above conventional statistical techniques using SPSS or other statistical packages. GIS is a methodological and conceptual approach that allows for the linking together of spatial data, or data that is based on a physical space, with non-spatial data, which can be thought of as any data that contains no direct reference to physical locations.
Publisher: Routledge
ISBN: 1135857598
Category : Political Science
Languages : en
Pages : 267
Book Description
This is the first book to provide sociologists, criminologists, political scientists, and other social scientists with the methodological logic and techniques for doing spatial analysis in their chosen fields of inquiry. The book contains a wealth of examples as to why these techniques are worth doing, over and above conventional statistical techniques using SPSS or other statistical packages. GIS is a methodological and conceptual approach that allows for the linking together of spatial data, or data that is based on a physical space, with non-spatial data, which can be thought of as any data that contains no direct reference to physical locations.
An Introduction to R for Spatial Analysis and Mapping
Author: Chris Brunsdon
Publisher: SAGE
ISBN: 1473911192
Category : Social Science
Languages : en
Pages : 386
Book Description
"In an age of big data, data journalism and with a wealth of quantitative information around us, it is not enough for students to be taught only 100 year old statistical methods using ′out of the box′ software. They need to have 21st-century analytical skills too. This is an excellent and student-friendly text from two of the world leaders in the teaching and development of spatial analysis. It shows clearly why the open source software R is not just an alternative to commercial GIS, it may actually be the better choice for mapping, analysis and for replicable research. Providing practical tips as well as fully working code, this is a practical ′how to′ guide ideal for undergraduates as well as those using R for the first time. It will be required reading on my own courses." - Richard Harris, Professor of Quantitative Social Science, University of Bristol R is a powerful open source computing tool that supports geographical analysis and mapping for the many geography and ‘non-geography’ students and researchers interested in spatial analysis and mapping. This book provides an introduction to the use of R for spatial statistical analysis, geocomputation and the analysis of geographical information for researchers collecting and using data with location attached, largely through increased GPS functionality. Brunsdon and Comber take readers from ‘zero to hero’ in spatial analysis and mapping through functions they have developed and compiled into R packages. This enables practical R applications in GIS, spatial analyses, spatial statistics, mapping, and web-scraping. Each chapter includes: Example data and commands for exploring it Scripts and coding to exemplify specific functionality Advice for developing greater understanding - through functions such as locator(), View(), and alternative coding to achieve the same ends Self-contained exercises for students to work through Embedded code within the descriptive text. This is a definitive ′how to′ that takes students - of any discipline - from coding to actual applications and uses of R.
Publisher: SAGE
ISBN: 1473911192
Category : Social Science
Languages : en
Pages : 386
Book Description
"In an age of big data, data journalism and with a wealth of quantitative information around us, it is not enough for students to be taught only 100 year old statistical methods using ′out of the box′ software. They need to have 21st-century analytical skills too. This is an excellent and student-friendly text from two of the world leaders in the teaching and development of spatial analysis. It shows clearly why the open source software R is not just an alternative to commercial GIS, it may actually be the better choice for mapping, analysis and for replicable research. Providing practical tips as well as fully working code, this is a practical ′how to′ guide ideal for undergraduates as well as those using R for the first time. It will be required reading on my own courses." - Richard Harris, Professor of Quantitative Social Science, University of Bristol R is a powerful open source computing tool that supports geographical analysis and mapping for the many geography and ‘non-geography’ students and researchers interested in spatial analysis and mapping. This book provides an introduction to the use of R for spatial statistical analysis, geocomputation and the analysis of geographical information for researchers collecting and using data with location attached, largely through increased GPS functionality. Brunsdon and Comber take readers from ‘zero to hero’ in spatial analysis and mapping through functions they have developed and compiled into R packages. This enables practical R applications in GIS, spatial analyses, spatial statistics, mapping, and web-scraping. Each chapter includes: Example data and commands for exploring it Scripts and coding to exemplify specific functionality Advice for developing greater understanding - through functions such as locator(), View(), and alternative coding to achieve the same ends Self-contained exercises for students to work through Embedded code within the descriptive text. This is a definitive ′how to′ that takes students - of any discipline - from coding to actual applications and uses of R.
Modern Spatial Econometrics in Practice
Author: Luc Anselin
Publisher: Geoda Press LLC
ISBN: 9780986342103
Category : Econometric models
Languages : en
Pages : 394
Book Description
This book is the definitive user's guide to the spatial regression functionality in the software packages GeoDa and GeoDaSpace, as well as the spreg module in the PySAL library --all developed at the GeoDa Center for Geospatial Analysis and Computation. The book provides the techniques to test for and estimate spatial effects in linear regression models, addressing both spatial dependence (spatial autoregressive models) as well as spatial heterogeneity (spatial regimes models). The book also serves as an introduction and a practical guide to spatial econometrics in that it covers the methodological principles and formal results that underlie the various estimation methods, test procedures and model characteristics computed by the software. While the classical maximum likelihood estimation is included, the book's coverage emphasizes modern techniques based on the principle of generalized method of moments (GMM).
Publisher: Geoda Press LLC
ISBN: 9780986342103
Category : Econometric models
Languages : en
Pages : 394
Book Description
This book is the definitive user's guide to the spatial regression functionality in the software packages GeoDa and GeoDaSpace, as well as the spreg module in the PySAL library --all developed at the GeoDa Center for Geospatial Analysis and Computation. The book provides the techniques to test for and estimate spatial effects in linear regression models, addressing both spatial dependence (spatial autoregressive models) as well as spatial heterogeneity (spatial regimes models). The book also serves as an introduction and a practical guide to spatial econometrics in that it covers the methodological principles and formal results that underlie the various estimation methods, test procedures and model characteristics computed by the software. While the classical maximum likelihood estimation is included, the book's coverage emphasizes modern techniques based on the principle of generalized method of moments (GMM).
New Directions in Spatial Econometrics
Author: Luc Anselin
Publisher: Springer Science & Business Media
ISBN: 3642798772
Category : Business & Economics
Languages : en
Pages : 432
Book Description
The promising new directions for research and applications described here include alternative model specifications, estimators and tests for regression models and new perspectives on dealing with spatial effects in models with limited dependent variables and space-time data.
Publisher: Springer Science & Business Media
ISBN: 3642798772
Category : Business & Economics
Languages : en
Pages : 432
Book Description
The promising new directions for research and applications described here include alternative model specifications, estimators and tests for regression models and new perspectives on dealing with spatial effects in models with limited dependent variables and space-time data.