Author: Hamid Reza Pourghasemi
Publisher: Elsevier
ISBN: 0128156953
Category : Science
Languages : en
Pages : 800
Book Description
Spatial Modeling in GIS and R for Earth and Environmental Sciences offers an integrated approach to spatial modelling using both GIS and R. Given the importance of Geographical Information Systems and geostatistics across a variety of applications in Earth and Environmental Science, a clear link between GIS and open source software is essential for the study of spatial objects or phenomena that occur in the real world and facilitate problem-solving. Organized into clear sections on applications and using case studies, the book helps researchers to more quickly understand GIS data and formulate more complex conclusions. The book is the first reference to provide methods and applications for combining the use of R and GIS in modeling spatial processes. It is an essential tool for students and researchers in earth and environmental science, especially those looking to better utilize GIS and spatial modeling. - Offers a clear, interdisciplinary guide to serve researchers in a variety of fields, including hazards, land surveying, remote sensing, cartography, geophysics, geology, natural resources, environment and geography - Provides an overview, methods and case studies for each application - Expresses concepts and methods at an appropriate level for both students and new users to learn by example
Spatial Modeling in GIS and R for Earth and Environmental Sciences
Author: Hamid Reza Pourghasemi
Publisher: Elsevier
ISBN: 0128156953
Category : Science
Languages : en
Pages : 800
Book Description
Spatial Modeling in GIS and R for Earth and Environmental Sciences offers an integrated approach to spatial modelling using both GIS and R. Given the importance of Geographical Information Systems and geostatistics across a variety of applications in Earth and Environmental Science, a clear link between GIS and open source software is essential for the study of spatial objects or phenomena that occur in the real world and facilitate problem-solving. Organized into clear sections on applications and using case studies, the book helps researchers to more quickly understand GIS data and formulate more complex conclusions. The book is the first reference to provide methods and applications for combining the use of R and GIS in modeling spatial processes. It is an essential tool for students and researchers in earth and environmental science, especially those looking to better utilize GIS and spatial modeling. - Offers a clear, interdisciplinary guide to serve researchers in a variety of fields, including hazards, land surveying, remote sensing, cartography, geophysics, geology, natural resources, environment and geography - Provides an overview, methods and case studies for each application - Expresses concepts and methods at an appropriate level for both students and new users to learn by example
Publisher: Elsevier
ISBN: 0128156953
Category : Science
Languages : en
Pages : 800
Book Description
Spatial Modeling in GIS and R for Earth and Environmental Sciences offers an integrated approach to spatial modelling using both GIS and R. Given the importance of Geographical Information Systems and geostatistics across a variety of applications in Earth and Environmental Science, a clear link between GIS and open source software is essential for the study of spatial objects or phenomena that occur in the real world and facilitate problem-solving. Organized into clear sections on applications and using case studies, the book helps researchers to more quickly understand GIS data and formulate more complex conclusions. The book is the first reference to provide methods and applications for combining the use of R and GIS in modeling spatial processes. It is an essential tool for students and researchers in earth and environmental science, especially those looking to better utilize GIS and spatial modeling. - Offers a clear, interdisciplinary guide to serve researchers in a variety of fields, including hazards, land surveying, remote sensing, cartography, geophysics, geology, natural resources, environment and geography - Provides an overview, methods and case studies for each application - Expresses concepts and methods at an appropriate level for both students and new users to learn by example
Spatial Linear Models for Environmental Data
Author: Dale L. Zimmerman
Publisher: CRC Press
ISBN: 0429595093
Category : Mathematics
Languages : en
Pages : 400
Book Description
Many applied researchers equate spatial statistics with prediction or mapping, but this book naturally extends linear models, which includes regression and ANOVA as pillars of applied statistics, to achieve a more comprehensive treatment of the analysis of spatially autocorrelated data. Spatial Linear Models for Environmental Data, aimed at students and professionals with a master’s level training in statistics, presents a unique, applied, and thorough treatment of spatial linear models within a statistics framework. Two subfields, one called geostatistics and the other called areal or lattice models, are extensively covered. Zimmerman and Ver Hoef present topics clearly, using many examples and simulation studies to illustrate ideas. By mimicking their examples and R code, readers will be able to fit spatial linear models to their data and draw proper scientific conclusions. Topics covered include: Exploratory methods for spatial data including outlier detection, (semi)variograms, Moran’s I, and Geary’s c. Ordinary and generalized least squares regression methods and their application to spatial data. Suitable parametric models for the mean and covariance structure of geostatistical and areal data. Model-fitting, including inference methods for explanatory variables and likelihood-based methods for covariance parameters. Practical use of spatial linear models including prediction (kriging), spatial sampling, and spatial design of experiments for solving real world problems. All concepts are introduced in a natural order and illustrated throughout the book using four datasets. All analyses, tables, and figures are completely reproducible using open-source R code provided at a GitHub site. Exercises are given at the end of each chapter, with full solutions provided on an instructor’s FTP site supplied by the publisher.
Publisher: CRC Press
ISBN: 0429595093
Category : Mathematics
Languages : en
Pages : 400
Book Description
Many applied researchers equate spatial statistics with prediction or mapping, but this book naturally extends linear models, which includes regression and ANOVA as pillars of applied statistics, to achieve a more comprehensive treatment of the analysis of spatially autocorrelated data. Spatial Linear Models for Environmental Data, aimed at students and professionals with a master’s level training in statistics, presents a unique, applied, and thorough treatment of spatial linear models within a statistics framework. Two subfields, one called geostatistics and the other called areal or lattice models, are extensively covered. Zimmerman and Ver Hoef present topics clearly, using many examples and simulation studies to illustrate ideas. By mimicking their examples and R code, readers will be able to fit spatial linear models to their data and draw proper scientific conclusions. Topics covered include: Exploratory methods for spatial data including outlier detection, (semi)variograms, Moran’s I, and Geary’s c. Ordinary and generalized least squares regression methods and their application to spatial data. Suitable parametric models for the mean and covariance structure of geostatistical and areal data. Model-fitting, including inference methods for explanatory variables and likelihood-based methods for covariance parameters. Practical use of spatial linear models including prediction (kriging), spatial sampling, and spatial design of experiments for solving real world problems. All concepts are introduced in a natural order and illustrated throughout the book using four datasets. All analyses, tables, and figures are completely reproducible using open-source R code provided at a GitHub site. Exercises are given at the end of each chapter, with full solutions provided on an instructor’s FTP site supplied by the publisher.
Geographically Weighted Regression
Author: A. Stewart Fotheringham
Publisher: John Wiley & Sons
ISBN: 0470855258
Category : Science
Languages : en
Pages : 282
Book Description
Geographical Weighted Regression (GWR) is a new local modelling technique for analysing spatial analysis. This technique allows local as opposed to global models of relationships to be measured and mapped. This is the first and only book on this technique, offering comprehensive coverage on this new 'hot' topic in spatial analysis. * Provides step-by-step examples of how to use the GWR model using data sets and examples on issues such as house price determinants, educational attainment levels and school performance statistics * Contains a broad discussion of and basic concepts on GWR through to ideas on statistical inference for GWR models * uniquely features accompanying author-written software that allows users to undertake sophisticated and complex forms of GWR within a user-friendly, Windows-based, front-end (see book for details).
Publisher: John Wiley & Sons
ISBN: 0470855258
Category : Science
Languages : en
Pages : 282
Book Description
Geographical Weighted Regression (GWR) is a new local modelling technique for analysing spatial analysis. This technique allows local as opposed to global models of relationships to be measured and mapped. This is the first and only book on this technique, offering comprehensive coverage on this new 'hot' topic in spatial analysis. * Provides step-by-step examples of how to use the GWR model using data sets and examples on issues such as house price determinants, educational attainment levels and school performance statistics * Contains a broad discussion of and basic concepts on GWR through to ideas on statistical inference for GWR models * uniquely features accompanying author-written software that allows users to undertake sophisticated and complex forms of GWR within a user-friendly, Windows-based, front-end (see book for details).
Spatial Regression Analysis Using Eigenvector Spatial Filtering
Author: Daniel Griffith
Publisher: Academic Press
ISBN: 0128156929
Category : Business & Economics
Languages : en
Pages : 288
Book Description
Spatial Regression Analysis Using Eigenvector Spatial Filtering provides theoretical foundations and guides practical implementation of the Moran eigenvector spatial filtering (MESF) technique. MESF is a novel and powerful spatial statistical methodology that allows spatial scientists to account for spatial autocorrelation in their georeferenced data analyses. Its appeal is in its simplicity, yet its implementation drawbacks include serious complexities associated with constructing an eigenvector spatial filter. This book discusses MESF specifications for various intermediate-level topics, including spatially varying coefficients models, (non) linear mixed models, local spatial autocorrelation, space-time models, and spatial interaction models. Spatial Regression Analysis Using Eigenvector Spatial Filtering is accompanied by sample R codes and a Windows application with illustrative datasets so that readers can replicate the examples in the book and apply the methodology to their own application projects. It also includes a Foreword by Pierre Legendre. - Reviews the uses of ESF across linear regression, generalized linear regression, spatial autocorrelation measurement, and spatially varying coefficient models - Includes computer code and template datasets for further modeling - Provides comprehensive coverage of related concepts in spatial data analysis and spatial statistics
Publisher: Academic Press
ISBN: 0128156929
Category : Business & Economics
Languages : en
Pages : 288
Book Description
Spatial Regression Analysis Using Eigenvector Spatial Filtering provides theoretical foundations and guides practical implementation of the Moran eigenvector spatial filtering (MESF) technique. MESF is a novel and powerful spatial statistical methodology that allows spatial scientists to account for spatial autocorrelation in their georeferenced data analyses. Its appeal is in its simplicity, yet its implementation drawbacks include serious complexities associated with constructing an eigenvector spatial filter. This book discusses MESF specifications for various intermediate-level topics, including spatially varying coefficients models, (non) linear mixed models, local spatial autocorrelation, space-time models, and spatial interaction models. Spatial Regression Analysis Using Eigenvector Spatial Filtering is accompanied by sample R codes and a Windows application with illustrative datasets so that readers can replicate the examples in the book and apply the methodology to their own application projects. It also includes a Foreword by Pierre Legendre. - Reviews the uses of ESF across linear regression, generalized linear regression, spatial autocorrelation measurement, and spatially varying coefficient models - Includes computer code and template datasets for further modeling - Provides comprehensive coverage of related concepts in spatial data analysis and spatial statistics
Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan
Author: Franzi Korner-Nievergelt
Publisher: Academic Press
ISBN: 0128016787
Category : Science
Languages : en
Pages : 329
Book Description
Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and STAN examines the Bayesian and frequentist methods of conducting data analyses. The book provides the theoretical background in an easy-to-understand approach, encouraging readers to examine the processes that generated their data. Including discussions of model selection, model checking, and multi-model inference, the book also uses effect plots that allow a natural interpretation of data. Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and STAN introduces Bayesian software, using R for the simple modes, and flexible Bayesian software (BUGS and Stan) for the more complicated ones. Guiding the ready from easy toward more complex (real) data analyses ina step-by-step manner, the book presents problems and solutions—including all R codes—that are most often applicable to other data and questions, making it an invaluable resource for analyzing a variety of data types. - Introduces Bayesian data analysis, allowing users to obtain uncertainty measurements easily for any derived parameter of interest - Written in a step-by-step approach that allows for eased understanding by non-statisticians - Includes a companion website containing R-code to help users conduct Bayesian data analyses on their own data - All example data as well as additional functions are provided in the R-package blmeco
Publisher: Academic Press
ISBN: 0128016787
Category : Science
Languages : en
Pages : 329
Book Description
Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and STAN examines the Bayesian and frequentist methods of conducting data analyses. The book provides the theoretical background in an easy-to-understand approach, encouraging readers to examine the processes that generated their data. Including discussions of model selection, model checking, and multi-model inference, the book also uses effect plots that allow a natural interpretation of data. Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and STAN introduces Bayesian software, using R for the simple modes, and flexible Bayesian software (BUGS and Stan) for the more complicated ones. Guiding the ready from easy toward more complex (real) data analyses ina step-by-step manner, the book presents problems and solutions—including all R codes—that are most often applicable to other data and questions, making it an invaluable resource for analyzing a variety of data types. - Introduces Bayesian data analysis, allowing users to obtain uncertainty measurements easily for any derived parameter of interest - Written in a step-by-step approach that allows for eased understanding by non-statisticians - Includes a companion website containing R-code to help users conduct Bayesian data analyses on their own data - All example data as well as additional functions are provided in the R-package blmeco
Spatio-Temporal Methods in Environmental Epidemiology
Author: Gavin Shaddick
Publisher: CRC Press
ISBN: 1482237040
Category : Mathematics
Languages : en
Pages : 383
Book Description
Teaches Students How to Perform Spatio-Temporal Analyses within Epidemiological StudiesSpatio-Temporal Methods in Environmental Epidemiology is the first book of its kind to specifically address the interface between environmental epidemiology and spatio-temporal modeling. In response to the growing need for collaboration between statisticians and
Publisher: CRC Press
ISBN: 1482237040
Category : Mathematics
Languages : en
Pages : 383
Book Description
Teaches Students How to Perform Spatio-Temporal Analyses within Epidemiological StudiesSpatio-Temporal Methods in Environmental Epidemiology is the first book of its kind to specifically address the interface between environmental epidemiology and spatio-temporal modeling. In response to the growing need for collaboration between statisticians and
A Primer for Spatial Econometrics
Author: G. Arbia
Publisher: Springer
ISBN: 1137317949
Category : Business & Economics
Languages : en
Pages : 161
Book Description
This book aims at meeting the growing demand in the field by introducing the basic spatial econometrics methodologies to a wide variety of researchers. It provides a practical guide that illustrates the potential of spatial econometric modelling, discusses problems and solutions and interprets empirical results.
Publisher: Springer
ISBN: 1137317949
Category : Business & Economics
Languages : en
Pages : 161
Book Description
This book aims at meeting the growing demand in the field by introducing the basic spatial econometrics methodologies to a wide variety of researchers. It provides a practical guide that illustrates the potential of spatial econometric modelling, discusses problems and solutions and interprets empirical results.
Environmental Data Analysis
Author: Carsten Dormann
Publisher: Springer Nature
ISBN: 3030550206
Category : Medical
Languages : en
Pages : 277
Book Description
Environmental Data Analysis is an introductory statistics textbook for environmental science. It covers descriptive, inferential and predictive statistics, centred on the Generalized Linear Model. The key idea behind this book is to approach statistical analyses from the perspective of maximum likelihood, essentially treating most analyses as (multiple) regression problems. The reader will be introduced to statistical distributions early on, and will learn to deploy models suitable for the data at hand, which in environmental science are often not normally distributed. To make the initially steep learning curve more manageable, each statistical chapter is followed by a walk-through in a corresponding R-based how-to chapter, which reviews the theory and applies it to environmental data. In this way, a coherent and expandable foundation in parametric statistics is laid, which can be expanded in advanced courses.The content has been “field-tested” in several years of courses on statistics for Environmental Science, Geography and Forestry taught at the University of Freiburg.
Publisher: Springer Nature
ISBN: 3030550206
Category : Medical
Languages : en
Pages : 277
Book Description
Environmental Data Analysis is an introductory statistics textbook for environmental science. It covers descriptive, inferential and predictive statistics, centred on the Generalized Linear Model. The key idea behind this book is to approach statistical analyses from the perspective of maximum likelihood, essentially treating most analyses as (multiple) regression problems. The reader will be introduced to statistical distributions early on, and will learn to deploy models suitable for the data at hand, which in environmental science are often not normally distributed. To make the initially steep learning curve more manageable, each statistical chapter is followed by a walk-through in a corresponding R-based how-to chapter, which reviews the theory and applies it to environmental data. In this way, a coherent and expandable foundation in parametric statistics is laid, which can be expanded in advanced courses.The content has been “field-tested” in several years of courses on statistics for Environmental Science, Geography and Forestry taught at the University of Freiburg.
Spatial Econometrics
Author: Harry Kelejian
Publisher: Academic Press
ISBN: 0128133929
Category : Business & Economics
Languages : en
Pages : 460
Book Description
Spatial Econometrics provides a modern, powerful and flexible skillset to early career researchers interested in entering this rapidly expanding discipline. It articulates the principles and current practice of modern spatial econometrics and spatial statistics, combining rigorous depth of presentation with unusual depth of coverage. Introducing and formalizing the principles of, and 'need' for, models which define spatial interactions, the book provides a comprehensive framework for almost every major facet of modern science. Subjects covered at length include spatial regression models, weighting matrices, estimation procedures and the complications associated with their use. The work particularly focuses on models of uncertainty and estimation under various complications relating to model specifications, data problems, tests of hypotheses, along with systems and panel data extensions which are covered in exhaustive detail. Extensions discussing pre-test procedures and Bayesian methodologies are provided at length. Throughout, direct applications of spatial models are described in detail, with copious illustrative empirical examples demonstrating how readers might implement spatial analysis in research projects. Designed as a textbook and reference companion, every chapter concludes with a set of questions for formal or self--study. Finally, the book includes extensive supplementing information in a large sample theory in the R programming language that supports early career econometricians interested in the implementation of statistical procedures covered. - Combines advanced theoretical foundations with cutting-edge computational developments in R - Builds from solid foundations, to more sophisticated extensions that are intended to jumpstart research careers in spatial econometrics - Written by two of the most accomplished and extensively published econometricians working in the discipline - Describes fundamental principles intuitively, but without sacrificing rigor - Provides empirical illustrations for many spatial methods across diverse field - Emphasizes a modern treatment of the field using the generalized method of moments (GMM) approach - Explores sophisticated modern research methodologies, including pre-test procedures and Bayesian data analysis
Publisher: Academic Press
ISBN: 0128133929
Category : Business & Economics
Languages : en
Pages : 460
Book Description
Spatial Econometrics provides a modern, powerful and flexible skillset to early career researchers interested in entering this rapidly expanding discipline. It articulates the principles and current practice of modern spatial econometrics and spatial statistics, combining rigorous depth of presentation with unusual depth of coverage. Introducing and formalizing the principles of, and 'need' for, models which define spatial interactions, the book provides a comprehensive framework for almost every major facet of modern science. Subjects covered at length include spatial regression models, weighting matrices, estimation procedures and the complications associated with their use. The work particularly focuses on models of uncertainty and estimation under various complications relating to model specifications, data problems, tests of hypotheses, along with systems and panel data extensions which are covered in exhaustive detail. Extensions discussing pre-test procedures and Bayesian methodologies are provided at length. Throughout, direct applications of spatial models are described in detail, with copious illustrative empirical examples demonstrating how readers might implement spatial analysis in research projects. Designed as a textbook and reference companion, every chapter concludes with a set of questions for formal or self--study. Finally, the book includes extensive supplementing information in a large sample theory in the R programming language that supports early career econometricians interested in the implementation of statistical procedures covered. - Combines advanced theoretical foundations with cutting-edge computational developments in R - Builds from solid foundations, to more sophisticated extensions that are intended to jumpstart research careers in spatial econometrics - Written by two of the most accomplished and extensively published econometricians working in the discipline - Describes fundamental principles intuitively, but without sacrificing rigor - Provides empirical illustrations for many spatial methods across diverse field - Emphasizes a modern treatment of the field using the generalized method of moments (GMM) approach - Explores sophisticated modern research methodologies, including pre-test procedures and Bayesian data analysis
Spatial Data Analysis in Ecology and Agriculture Using R
Author: Richard E. Plant
Publisher: CRC Press
ISBN: 9780367732325
Category :
Languages : en
Pages : 666
Book Description
Key features: Unique in its combination of serving as an introduction to spatial statistics and to modeling agricultural and ecological data using R Provides exercises in each chapter to facilitate the book's use as a course textbook or for self-study Adds new material on generalized additive models, point pattern analysis, and new methods of Bayesian analysis of spatial data. Includes a completely revised chapter on the analysis of spatiotemporal data featuring recently introduced software and methods Updates its coverage of R software including newly introduced packages Spatial Data Analysis in Ecology and Agriculture Using R, 2nd Edition provides practical instruction on the use of the R programming language to analyze spatial data arising from research in ecology, agriculture, and environmental science. Readers have praised the book's practical coverage of spatial statistics, real-world examples, and user-friendly approach in presenting and explaining R code, aspects maintained in this update. Using data sets from cultivated and uncultivated ecosystems, the book guides the reader through the analysis of each data set, including setting research objectives, designing the sampling plan, data quality control, exploratory and confirmatory data analysis, and drawing scientific conclusions. Additional material to accompany the book, on both analyzing satellite data and on multivariate analysis, can be accessed at https: //www.plantsciences.ucdavis.edu/plant/additionaltopics.htm.
Publisher: CRC Press
ISBN: 9780367732325
Category :
Languages : en
Pages : 666
Book Description
Key features: Unique in its combination of serving as an introduction to spatial statistics and to modeling agricultural and ecological data using R Provides exercises in each chapter to facilitate the book's use as a course textbook or for self-study Adds new material on generalized additive models, point pattern analysis, and new methods of Bayesian analysis of spatial data. Includes a completely revised chapter on the analysis of spatiotemporal data featuring recently introduced software and methods Updates its coverage of R software including newly introduced packages Spatial Data Analysis in Ecology and Agriculture Using R, 2nd Edition provides practical instruction on the use of the R programming language to analyze spatial data arising from research in ecology, agriculture, and environmental science. Readers have praised the book's practical coverage of spatial statistics, real-world examples, and user-friendly approach in presenting and explaining R code, aspects maintained in this update. Using data sets from cultivated and uncultivated ecosystems, the book guides the reader through the analysis of each data set, including setting research objectives, designing the sampling plan, data quality control, exploratory and confirmatory data analysis, and drawing scientific conclusions. Additional material to accompany the book, on both analyzing satellite data and on multivariate analysis, can be accessed at https: //www.plantsciences.ucdavis.edu/plant/additionaltopics.htm.