Author: Jorge Angeles
Publisher: Berlin : Springer-Verlag
ISBN:
Category : Kinematics
Languages : en
Pages : 394
Book Description
Spatial Kinematic Chains
Author: Jorge Angeles
Publisher: Berlin : Springer-Verlag
ISBN:
Category : Kinematics
Languages : en
Pages : 394
Book Description
Publisher: Berlin : Springer-Verlag
ISBN:
Category : Kinematics
Languages : en
Pages : 394
Book Description
Modern Robotics
Author: Kevin M. Lynch
Publisher: Cambridge University Press
ISBN: 1107156300
Category : Computers
Languages : en
Pages : 545
Book Description
A modern and unified treatment of the mechanics, planning, and control of robots, suitable for a first course in robotics.
Publisher: Cambridge University Press
ISBN: 1107156300
Category : Computers
Languages : en
Pages : 545
Book Description
A modern and unified treatment of the mechanics, planning, and control of robots, suitable for a first course in robotics.
Spatial Kinematic Chains
Author: Jorge Angeles
Publisher:
ISBN: 9783642488207
Category :
Languages : en
Pages : 384
Book Description
Publisher:
ISBN: 9783642488207
Category :
Languages : en
Pages : 384
Book Description
Kinematics of General Spatial Mechanical Systems
Author: M. Kemal Ozgoren
Publisher: John Wiley & Sons
ISBN: 111919573X
Category : Mathematics
Languages : en
Pages : 469
Book Description
Guide to kinematic theory for the analysis of spatial mechanisms and manipulators Kinematics of General Spatial Mechanical Systems is an effective and proficient guide to the kinematic description and analysis of the spatial mechanical systems such as serial manipulators, parallel manipulators and spatial mechanisms. The author highlights the analytical and semi-analytical methods for solving the relevant equations and considers four main elements: The mathematics of spatial kinematics with the necessary theorems, formulas and methods; The kinematic description of the links and joints including the rolling contact joints; Writing the kinematic chain and loop equations for the systems to be analyzed; and Solving these equations for the unspecified variables both in the forward and inverse senses together with the multiplicity and singularity analyses. Comprehensive in scope, the book covers topics ranging from rather elementary subjects such as spatial mechanisms with single degree of freedom to more advanced topics such as serial manipulators including redundant and deficient ones, parallel manipulators, and non-holonomic spatial cam mechanisms that involve rolling without slipping motions. The author presents an effective and accessible symbolic manipulation method making it possible to obtain neat and transparent expressions that describe the systems showing all the kinematic details. Such expressions readily lead to analytical or semi-analytical solutions. They also facilitate the identification and analysis of the multiplicities and singularities. This all-time beneficial book: Provides an easy-to-use systematic formulation method that is applicable to all sorts of spatial machanisms and manipulators Introduces a symbolic manipulation method, which is effective and straightforward to use, so that kinematic relationships can be simplified by using all the special geometric features of the system Offers an accessible format that uses a systematic and easy-to-conceive notation which has proven successful Presents content written by an author who is a renowned expert in the field Includes an accompanying website Written for academicians, students, engineers, computer scientists and any other people working in the area of spatial mechanisms and manipulators, Kinematics of General Spatial Mechanical Systems provides a clear notation, formulation, and a logical approach to the topic and offers a fresh presentation of challenging material.
Publisher: John Wiley & Sons
ISBN: 111919573X
Category : Mathematics
Languages : en
Pages : 469
Book Description
Guide to kinematic theory for the analysis of spatial mechanisms and manipulators Kinematics of General Spatial Mechanical Systems is an effective and proficient guide to the kinematic description and analysis of the spatial mechanical systems such as serial manipulators, parallel manipulators and spatial mechanisms. The author highlights the analytical and semi-analytical methods for solving the relevant equations and considers four main elements: The mathematics of spatial kinematics with the necessary theorems, formulas and methods; The kinematic description of the links and joints including the rolling contact joints; Writing the kinematic chain and loop equations for the systems to be analyzed; and Solving these equations for the unspecified variables both in the forward and inverse senses together with the multiplicity and singularity analyses. Comprehensive in scope, the book covers topics ranging from rather elementary subjects such as spatial mechanisms with single degree of freedom to more advanced topics such as serial manipulators including redundant and deficient ones, parallel manipulators, and non-holonomic spatial cam mechanisms that involve rolling without slipping motions. The author presents an effective and accessible symbolic manipulation method making it possible to obtain neat and transparent expressions that describe the systems showing all the kinematic details. Such expressions readily lead to analytical or semi-analytical solutions. They also facilitate the identification and analysis of the multiplicities and singularities. This all-time beneficial book: Provides an easy-to-use systematic formulation method that is applicable to all sorts of spatial machanisms and manipulators Introduces a symbolic manipulation method, which is effective and straightforward to use, so that kinematic relationships can be simplified by using all the special geometric features of the system Offers an accessible format that uses a systematic and easy-to-conceive notation which has proven successful Presents content written by an author who is a renowned expert in the field Includes an accompanying website Written for academicians, students, engineers, computer scientists and any other people working in the area of spatial mechanisms and manipulators, Kinematics of General Spatial Mechanical Systems provides a clear notation, formulation, and a logical approach to the topic and offers a fresh presentation of challenging material.
Modeling, Identification and Control of Robots
Author: W. Khalil
Publisher: Butterworth-Heinemann
ISBN: 0080536611
Category : Computers
Languages : en
Pages : 503
Book Description
Written by two of Europe's leading robotics experts, this book provides the tools for a unified approach to the modelling of robotic manipulators, whatever their mechanical structure. No other publication covers the three fundamental issues of robotics: modelling, identification and control. It covers the development of various mathematical models required for the control and simulation of robots.·World class authority·Unique range of coverage not available in any other book·Provides a complete course on robotic control at an undergraduate and graduate level
Publisher: Butterworth-Heinemann
ISBN: 0080536611
Category : Computers
Languages : en
Pages : 503
Book Description
Written by two of Europe's leading robotics experts, this book provides the tools for a unified approach to the modelling of robotic manipulators, whatever their mechanical structure. No other publication covers the three fundamental issues of robotics: modelling, identification and control. It covers the development of various mathematical models required for the control and simulation of robots.·World class authority·Unique range of coverage not available in any other book·Provides a complete course on robotic control at an undergraduate and graduate level
Advanced Theory of Constraint and Motion Analysis for Robot Mechanisms
Author: Jingshan Zhao
Publisher: Academic Press
ISBN: 9780128101773
Category : Computers
Languages : en
Pages : 0
Book Description
Advanced Theory of Constraint and Motion Analysis for Robot Mechanisms provides a complete analytical approach to the invention of new robot mechanisms and the analysis of existing designs based on a unified mathematical description of the kinematic and geometric constraints of mechanisms. Beginning with a high level introduction to mechanisms and components, the book moves on to present a new analytical theory of terminal constraints for use in the development of new spatial mechanisms and structures. It clearly describes the application of screw theory to kinematic problems and provides tools that students, engineers and researchers can use for investigation of critical factors such as workspace, dexterity and singularity.
Publisher: Academic Press
ISBN: 9780128101773
Category : Computers
Languages : en
Pages : 0
Book Description
Advanced Theory of Constraint and Motion Analysis for Robot Mechanisms provides a complete analytical approach to the invention of new robot mechanisms and the analysis of existing designs based on a unified mathematical description of the kinematic and geometric constraints of mechanisms. Beginning with a high level introduction to mechanisms and components, the book moves on to present a new analytical theory of terminal constraints for use in the development of new spatial mechanisms and structures. It clearly describes the application of screw theory to kinematic problems and provides tools that students, engineers and researchers can use for investigation of critical factors such as workspace, dexterity and singularity.
Geometric Design of Linkages
Author: J. Michael McCarthy
Publisher: Springer Science & Business Media
ISBN: 1441978925
Category : Science
Languages : en
Pages : 466
Book Description
This book is an introduction to the mathematical theory of design for articulated mechanical systems known as linkages. The focus is on sizing mechanical constraints that guide the movement of a work piece, or end-effector, of the system. The function of the device is prescribed as a set of positions to be reachable by the end-effector; and the mechanical constraints are formed by joints that limit relative movement. The goal is to find all the devices that can achieve a specific task. Formulated in this way the design problem is purely geometric in character. Robot manipulators, walking machines, and mechanical hands are examples of articulated mechanical systems that rely on simple mechanical constraints to provide a complex workspace for the end- effector. The principles presented in this book form the foundation for a design theory for these devices. The emphasis, however, is on articulated systems with fewer degrees of freedom than that of the typical robotic system, and therefore, less complexity. This book will be useful to mathematics, engineering and computer science departments teaching courses on mathematical modeling of robotics and other articulated mechanical systems. This new edition includes research results of the past decade on the synthesis of multi loop planar and spherical linkages, and the use of homotopy methods and Clifford algebras in the synthesis of spatial serial chains. One new chapter on the synthesis of spatial serial chains introduces numerical homotopy and the linear product decomposition of polynomial systems. The second new chapter introduces the Clifford algebra formulation of the kinematics equations of serial chain robots. Examples are use throughout to demonstrate the theory.
Publisher: Springer Science & Business Media
ISBN: 1441978925
Category : Science
Languages : en
Pages : 466
Book Description
This book is an introduction to the mathematical theory of design for articulated mechanical systems known as linkages. The focus is on sizing mechanical constraints that guide the movement of a work piece, or end-effector, of the system. The function of the device is prescribed as a set of positions to be reachable by the end-effector; and the mechanical constraints are formed by joints that limit relative movement. The goal is to find all the devices that can achieve a specific task. Formulated in this way the design problem is purely geometric in character. Robot manipulators, walking machines, and mechanical hands are examples of articulated mechanical systems that rely on simple mechanical constraints to provide a complex workspace for the end- effector. The principles presented in this book form the foundation for a design theory for these devices. The emphasis, however, is on articulated systems with fewer degrees of freedom than that of the typical robotic system, and therefore, less complexity. This book will be useful to mathematics, engineering and computer science departments teaching courses on mathematical modeling of robotics and other articulated mechanical systems. This new edition includes research results of the past decade on the synthesis of multi loop planar and spherical linkages, and the use of homotopy methods and Clifford algebras in the synthesis of spatial serial chains. One new chapter on the synthesis of spatial serial chains introduces numerical homotopy and the linear product decomposition of polynomial systems. The second new chapter introduces the Clifford algebra formulation of the kinematics equations of serial chain robots. Examples are use throughout to demonstrate the theory.
Mechanism Design
Author: Lung-Wen Tsai
Publisher: CRC Press
ISBN: 9781420058420
Category : Technology & Engineering
Languages : en
Pages : 332
Book Description
Traditionally, mechanisms are created by designer's intuition, ingenuity, and experience. However, such an ad hoc approach cannot ensure the identification of all possible design alternatives, nor does it necessarily lead to optimum design. Mechanism Design: Enumeration of Kinematic Structures According to Function introduces a methodology for systematic creation and classification of mechanisms. With a partly analytical and partly algorithmic approach, the author uses graph theory, combinatorial analysis, and computer algorithms to create kinematic structures of the same nature in a systematic and unbiased manner. He sketches mechanism structures, evaluating them with respect to the remaining functional requirements, and provides numerous atlases of mechanisms that can be used as a source of ideas for mechanism and machine design. He bases the book on the idea that some of the functional requirements of a desired mechanism can be transformed into structural characteristics that can be used for the enumeration of mechanisms. The most difficult problem most mechanical designers face at the conceptual design phase is the creation of design alternatives. Mechanism Design: Enumeration of Kinematic Structures According to Function presents you with a methodology that is not available in any other resource.
Publisher: CRC Press
ISBN: 9781420058420
Category : Technology & Engineering
Languages : en
Pages : 332
Book Description
Traditionally, mechanisms are created by designer's intuition, ingenuity, and experience. However, such an ad hoc approach cannot ensure the identification of all possible design alternatives, nor does it necessarily lead to optimum design. Mechanism Design: Enumeration of Kinematic Structures According to Function introduces a methodology for systematic creation and classification of mechanisms. With a partly analytical and partly algorithmic approach, the author uses graph theory, combinatorial analysis, and computer algorithms to create kinematic structures of the same nature in a systematic and unbiased manner. He sketches mechanism structures, evaluating them with respect to the remaining functional requirements, and provides numerous atlases of mechanisms that can be used as a source of ideas for mechanism and machine design. He bases the book on the idea that some of the functional requirements of a desired mechanism can be transformed into structural characteristics that can be used for the enumeration of mechanisms. The most difficult problem most mechanical designers face at the conceptual design phase is the creation of design alternatives. Mechanism Design: Enumeration of Kinematic Structures According to Function presents you with a methodology that is not available in any other resource.
Kinematic Differential Geometry and Saddle Synthesis of Linkages
Author: Delun Wang
Publisher: John Wiley & Sons
ISBN: 1118255046
Category : Technology & Engineering
Languages : en
Pages : 496
Book Description
With a pioneering methodology, the book covers the fundamental aspects of kinematic analysis and synthesis of linkage, and provides a theoretical foundation for engineers and researchers in mechanisms design. • The first book to propose a complete curvature theory for planar, spherical and spatial motion • Treatment of the synthesis of linkages with a novel approach • Well-structured format with chapters introducing clearly distinguishable concepts following in a logical sequence dealing with planar, spherical and spatial motion • Presents a pioneering methodology by a recognized expert in the field and brought up to date with the latest research and findings • Fundamental theory and application examples are supplied fully illustrated throughout
Publisher: John Wiley & Sons
ISBN: 1118255046
Category : Technology & Engineering
Languages : en
Pages : 496
Book Description
With a pioneering methodology, the book covers the fundamental aspects of kinematic analysis and synthesis of linkage, and provides a theoretical foundation for engineers and researchers in mechanisms design. • The first book to propose a complete curvature theory for planar, spherical and spatial motion • Treatment of the synthesis of linkages with a novel approach • Well-structured format with chapters introducing clearly distinguishable concepts following in a logical sequence dealing with planar, spherical and spatial motion • Presents a pioneering methodology by a recognized expert in the field and brought up to date with the latest research and findings • Fundamental theory and application examples are supplied fully illustrated throughout
Advances in Robot Kinematics and Computational Geometry
Author: Jadran Lenarčič
Publisher: Springer Science & Business Media
ISBN: 940158348X
Category : Technology & Engineering
Languages : en
Pages : 504
Book Description
Recently, research in robot kinematics has attracted researchers with different theoretical profiles and backgrounds, such as mechanical and electrica! engineering, computer science, and mathematics. It includes topics and problems that are typical for this area and cannot easily be met elsewhere. As a result, a specialised scientific community has developed concentrating its interest in a broad class of problems in this area and representing a conglomeration of disciplines including mechanics, theory of systems, algebra, and others. Usually, kinematics is referred to as the branch of mechanics which treats motion of a body without regard to the forces and moments that cause it. In robotics, kinematics studies the motion of robots for programming, control and design purposes. It deals with the spatial positions, orientations, velocities and accelerations of the robotic mechanisms and objects to be manipulated in a robot workspace. The objective is to find the most effective mathematical forms for mapping between various types of coordinate systems, methods to minimise the numerical complexity of algorithms for real-time control schemes, and to discover and visualise analytical tools for understanding and evaluation of motion properties ofvarious mechanisms used in a robotic system.
Publisher: Springer Science & Business Media
ISBN: 940158348X
Category : Technology & Engineering
Languages : en
Pages : 504
Book Description
Recently, research in robot kinematics has attracted researchers with different theoretical profiles and backgrounds, such as mechanical and electrica! engineering, computer science, and mathematics. It includes topics and problems that are typical for this area and cannot easily be met elsewhere. As a result, a specialised scientific community has developed concentrating its interest in a broad class of problems in this area and representing a conglomeration of disciplines including mechanics, theory of systems, algebra, and others. Usually, kinematics is referred to as the branch of mechanics which treats motion of a body without regard to the forces and moments that cause it. In robotics, kinematics studies the motion of robots for programming, control and design purposes. It deals with the spatial positions, orientations, velocities and accelerations of the robotic mechanisms and objects to be manipulated in a robot workspace. The objective is to find the most effective mathematical forms for mapping between various types of coordinate systems, methods to minimise the numerical complexity of algorithms for real-time control schemes, and to discover and visualise analytical tools for understanding and evaluation of motion properties ofvarious mechanisms used in a robotic system.