Spatial Data Mining

Spatial Data Mining PDF Author: Deren Li
Publisher: Springer
ISBN: 3662485389
Category : Computers
Languages : en
Pages : 329

Get Book Here

Book Description
· This book is an updated version of a well-received book previously published in Chinese by Science Press of China (the first edition in 2006 and the second in 2013). It offers a systematic and practical overview of spatial data mining, which combines computer science and geo-spatial information science, allowing each field to profit from the knowledge and techniques of the other. To address the spatiotemporal specialties of spatial data, the authors introduce the key concepts and algorithms of the data field, cloud model, mining view, and Deren Li methods. The data field method captures the interactions between spatial objects by diffusing the data contribution from a universe of samples to a universe of population, thereby bridging the gap between the data model and the recognition model. The cloud model is a qualitative method that utilizes quantitative numerical characters to bridge the gap between pure data and linguistic concepts. The mining view method discriminates the different requirements by using scale, hierarchy, and granularity in order to uncover the anisotropy of spatial data mining. The Deren Li method performs data preprocessing to prepare it for further knowledge discovery by selecting a weight for iteration in order to clean the observed spatial data as much as possible. In addition to the essential algorithms and techniques, the book provides application examples of spatial data mining in geographic information science and remote sensing. The practical projects include spatiotemporal video data mining for protecting public security, serial image mining on nighttime lights for assessing the severity of the Syrian Crisis, and the applications in the government project ‘the Belt and Road Initiatives’.

Spatial Data Mining

Spatial Data Mining PDF Author: Deren Li
Publisher: Springer
ISBN: 3662485389
Category : Computers
Languages : en
Pages : 329

Get Book Here

Book Description
· This book is an updated version of a well-received book previously published in Chinese by Science Press of China (the first edition in 2006 and the second in 2013). It offers a systematic and practical overview of spatial data mining, which combines computer science and geo-spatial information science, allowing each field to profit from the knowledge and techniques of the other. To address the spatiotemporal specialties of spatial data, the authors introduce the key concepts and algorithms of the data field, cloud model, mining view, and Deren Li methods. The data field method captures the interactions between spatial objects by diffusing the data contribution from a universe of samples to a universe of population, thereby bridging the gap between the data model and the recognition model. The cloud model is a qualitative method that utilizes quantitative numerical characters to bridge the gap between pure data and linguistic concepts. The mining view method discriminates the different requirements by using scale, hierarchy, and granularity in order to uncover the anisotropy of spatial data mining. The Deren Li method performs data preprocessing to prepare it for further knowledge discovery by selecting a weight for iteration in order to clean the observed spatial data as much as possible. In addition to the essential algorithms and techniques, the book provides application examples of spatial data mining in geographic information science and remote sensing. The practical projects include spatiotemporal video data mining for protecting public security, serial image mining on nighttime lights for assessing the severity of the Syrian Crisis, and the applications in the government project ‘the Belt and Road Initiatives’.

Quality Aspects in Spatial Data Mining

Quality Aspects in Spatial Data Mining PDF Author: Alfred Stein
Publisher: CRC Press
ISBN: 9780367386320
Category :
Languages : en
Pages : 374

Get Book Here

Book Description
Describes the State-of-the-Art in Spatial Data Mining, Focuses on Data Quality Substantial progress has been made toward developing effective techniques for spatial information processing in recent years. This science deals with models of reality in a GIS, however, and not with reality itself. Therefore, spatial information processes are often imprecise, allowing for much interpretation of abstract figures and data. Quality Aspects in Spatial Data Mining introduces practical and theoretical solutions for making sense of the often chaotic and overwhelming amount of concrete data available to researchers. In this cohesive collection of peer-reviewed chapters, field authorities present the latest field advancements and cover such essential areas as data acquisition, geoinformation theory, spatial statistics, and dissemination. Each chapter debuts with an editorial preview of each topic from a conceptual, applied, and methodological point of view, making it easier for researchers to judge which information is most beneficial to their work. Chapters Evolve From Error Propagation and Spatial Statistics to Address Relevant Applications The book advises the use of granular computing as a means of circumventing spatial complexities. This counter-application to traditional computing allows for the calculation of imprecise probabilities - the kind of information that the spatial information systems community wrestles with much of the time. Under the editorial guidance of internationally respected geoinformatics experts, this indispensable volume addresses quality aspects in the entire spatial data mining process, from data acquisition to end user. It also alleviates what is often field researchers' most daunting task by organizing the wealth of concrete spatial data available into one convenient source, thereby advancing the frontiers of spatial inf

Geographic Data Mining and Knowledge Discovery

Geographic Data Mining and Knowledge Discovery PDF Author: Harvey J. Miller
Publisher: CRC Press
ISBN: 1420073982
Category : Computers
Languages : en
Pages : 488

Get Book Here

Book Description
The Definitive Volume on Cutting-Edge Exploratory Analysis of Massive Spatial and Spatiotemporal DatabasesSince the publication of the first edition of Geographic Data Mining and Knowledge Discovery, new techniques for geographic data warehousing (GDW), spatial data mining, and geovisualization (GVis) have been developed. In addition, there has bee

Visual and Spatial Analysis

Visual and Spatial Analysis PDF Author: Boris Kovalerchuk
Publisher: Springer Science & Business Media
ISBN: 1402029586
Category : Computers
Languages : en
Pages : 582

Get Book Here

Book Description
Advanced visual analysis and problem solving has been conducted successfully for millennia. The Pythagorean Theorem was proven using visual means more than 2000 years ago. In the 19th century, John Snow stopped a cholera epidemic in London by proposing that a specific water pump be shut down. He discovered that pump by visually correlating data on a city map. The goal of this book is to present the current trends in visual and spatial analysis for data mining, reasoning, problem solving and decision-making. This is the first book to focus on visual decision making and problem solving in general with specific applications in the geospatial domain - combining theory with real-world practice. The book is unique in its integration of modern symbolic and visual approaches to decision making and problem solving. As such, it ties together much of the monograph and textbook literature in these emerging areas. This book contains 21 chapters that have been grouped into five parts: (1) visual problem solving and decision making, (2) visual and heterogeneous reasoning, (3) visual correlation, (4) visual and spatial data mining, and (5) visual and spatial problem solving in geospatial domains. Each chapter ends with a summary and exercises. The book is intended for professionals and graduate students in computer science, applied mathematics, imaging science and Geospatial Information Systems (GIS). In addition to being a state-of-the-art research compilation, this book can be used a text for advanced courses on the subjects such as modeling, computer graphics, visualization, image processing, data mining, GIS, and algorithm analysis.

Data Mining for Scientific and Engineering Applications

Data Mining for Scientific and Engineering Applications PDF Author: R.L. Grossman
Publisher: Springer Science & Business Media
ISBN: 1461517338
Category : Computers
Languages : en
Pages : 608

Get Book Here

Book Description
Advances in technology are making massive data sets common in many scientific disciplines, such as astronomy, medical imaging, bio-informatics, combinatorial chemistry, remote sensing, and physics. To find useful information in these data sets, scientists and engineers are turning to data mining techniques. This book is a collection of papers based on the first two in a series of workshops on mining scientific datasets. It illustrates the diversity of problems and application areas that can benefit from data mining, as well as the issues and challenges that differentiate scientific data mining from its commercial counterpart. While the focus of the book is on mining scientific data, the work is of broader interest as many of the techniques can be applied equally well to data arising in business and web applications. Audience: This work would be an excellent text for students and researchers who are familiar with the basic principles of data mining and want to learn more about the application of data mining to their problem in science or engineering.

Natural Hazards GIS-Based Spatial Modeling Using Data Mining Techniques

Natural Hazards GIS-Based Spatial Modeling Using Data Mining Techniques PDF Author: Hamid Reza Pourghasemi
Publisher: Springer
ISBN: 3319733834
Category : Nature
Languages : en
Pages : 311

Get Book Here

Book Description
This edited volume assesses capabilities of data mining algorithms for spatial modeling of natural hazards in different countries based on a collection of essays written by experts in the field. The book is organized on different hazards including landslides, flood, forest fire, land subsidence, earthquake, and gully erosion. Chapters were peer-reviewed by recognized scholars in the field of natural hazards research. Each chapter provides an overview on the topic, methods applied, and discusses examples used. The concepts and methods are explained at a level that allows undergraduates to understand and other readers learn through examples. This edited volume is shaped and structured to provide the reader with a comprehensive overview of all covered topics. It serves as a reference for researchers from different fields including land surveying, remote sensing, cartography, GIS, geophysics, geology, natural resources, and geography. It also serves as a guide for researchers, students, organizations, and decision makers active in land use planning and hazard management.

Knowledge Discovery in Spatial Data

Knowledge Discovery in Spatial Data PDF Author: Yee Leung
Publisher: Springer Science & Business Media
ISBN: 3642026648
Category : Social Science
Languages : en
Pages : 381

Get Book Here

Book Description
When I ?rst came across the term data mining and knowledge discovery in databases, I was excited and curious to ?nd out what it was all about. I was excited because the term tends to convey a new ?eld that is in the making. I was curious because I wondered what it was doing that the other ?elds of research, such as statistics and the broad ?eld of arti?cial intelligence, were not doing. After reading up on the literature, I have come to realize that it is not much different from conventional data analysis. The commonly used de?nition of knowledge discovery in databases: “the non-trivial process of identifying valid, novel, potentially useful, and ultimately understandable patterns in data” is actually in line with the core mission of conventional data analysis. The process employed by conventional data analysis is by no means trivial, and the patterns in data to be unraveled have, of course, to be valid, novel, useful and understandable. Therefore, what is the commotion all about? Careful scrutiny of the main lines of research in data mining and knowledge discovery again told me that they are not much different from that of conventional data analysis. Putting aside data warehousing and database m- agement aspects, again a main area of research in conventional database research, the rest of the tasks in data mining are largely the main concerns of conventional data analysis.

Emerging Trends in Open Source Geographic Information Systems

Emerging Trends in Open Source Geographic Information Systems PDF Author: Srivastava, Naveenchandra N.
Publisher: IGI Global
ISBN: 1522550402
Category : Technology & Engineering
Languages : en
Pages : 317

Get Book Here

Book Description
Open access to information of geographic places and spatial relationships provides an essential part of the analytical processing of spatial data. Access to connected geospatial programs allows for improvement in teaching and understanding science, technology, engineering, and mathematics. Emerging Trends in Open Source Geographic Information Systems provides emerging research on the applications of free and open software in geographic information systems in various fields of study. While highlighting topics such as data warehousing, hydrological modeling, and software packages, this publication explores the assessment and techniques of open software functionality and interfaces. This book is an important resource for professionals, researchers, academicians, and students seeking current research on the different types and uses of data and data analysis in geographic information systems.

Lecture Notes in Data Mining

Lecture Notes in Data Mining PDF Author: Michael W. Berry
Publisher: World Scientific
ISBN: 9812773630
Category : Computers
Languages : en
Pages : 238

Get Book Here

Book Description
The continual explosion of information technology and the need for better data collection and management methods has made data mining an even more relevant topic of study. Books on data mining tend to be either broad and introductory or focus on some very specific technical aspect of the field. This book is a series of seventeen edited OC student-authored lecturesOCO which explore in depth the core of data mining (classification, clustering and association rules) by offering overviews that include both analysis and insight. The initial chapters lay a framework of data mining techniques by explaining some of the basics such as applications of Bayes Theorem, similarity measures, and decision trees. Before focusing on the pillars of classification, clustering and association rules, the book also considers alternative candidates such as point estimation and genetic algorithms. The book''s discussion of classification includes an introduction to decision tree algorithms, rule-based algorithms (a popular alternative to decision trees) and distance-based algorithms. Five of the lecture-chapters are devoted to the concept of clustering or unsupervised classification. The functionality of hierarchical and partitional clustering algorithms is also covered as well as the efficient and scalable clustering algorithms used in large databases. The concept of association rules in terms of basic algorithms, parallel and distributive algorithms and advanced measures that help determine the value of association rules are discussed. The final chapter discusses algorithms for spatial data mining. Sample Chapter(s). Chapter 1: Point Estimation Algorithms (397 KB). Contents: Point Estimation Algorithms; Applications of Bayes Theorem; Similarity Measures; Decision Trees; Genetic Algorithms; Classification: Distance Based Algorithms; Decision Tree-Based Algorithms; Covering (Rule-Based) Algorithms; Clustering: An Overview; Clustering Hierarchical Algorithms; Clustering Partitional Algorithms; Clustering: Large Databases; Clustering Categorical Attributes; Association Rules: An Overview; Association Rules: Parallel and Distributed Algorithms; Association Rules: Advanced Techniques and Measures; Spatial Mining: Techniques and Algorithms. Readership: An introductory data mining textbook or a technical data mining book for an upper level undergraduate or graduate level course."

Advances in Knowledge Discovery and Data Mining

Advances in Knowledge Discovery and Data Mining PDF Author: Ming-Syan Cheng
Publisher: Springer Science & Business Media
ISBN: 3540437045
Category : Computers
Languages : en
Pages : 582

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 6th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2002, held in Taipei, Taiwan, in May 2002. The 32 revised full papers and 20 short papers presented together with 4 invited contributions were carefully reviewed and selected from a total of 128 submissions. The papers are organized in topical sections on association rules; classification; interestingness; sequence mining; clustering; Web mining; semi-structure and concept mining; data warehouse and data cube; bio-data mining; temporal mining; and outliers, missing data, and causation.