Sparse Modeling for Image and Vision Processing

Sparse Modeling for Image and Vision Processing PDF Author: Julien Mairal
Publisher: Now Publishers
ISBN: 9781680830088
Category : Computers
Languages : en
Pages : 216

Get Book Here

Book Description
Sparse Modeling for Image and Vision Processing offers a self-contained view of sparse modeling for visual recognition and image processing. More specifically, it focuses on applications where the dictionary is learned and adapted to data, yielding a compact representation that has been successful in various contexts.

Sparse Modeling for Image and Vision Processing

Sparse Modeling for Image and Vision Processing PDF Author: Julien Mairal
Publisher: Now Publishers
ISBN: 9781680830088
Category : Computers
Languages : en
Pages : 216

Get Book Here

Book Description
Sparse Modeling for Image and Vision Processing offers a self-contained view of sparse modeling for visual recognition and image processing. More specifically, it focuses on applications where the dictionary is learned and adapted to data, yielding a compact representation that has been successful in various contexts.

Sparse Modeling for Image and Vision Processing

Sparse Modeling for Image and Vision Processing PDF Author: Julien Mairal
Publisher:
ISBN: 9781680830095
Category : Computer graphics
Languages : en
Pages : 3

Get Book Here

Book Description
In recent years, a large amount of multi-disciplinary research has been conducted on sparse models and their applications. In statistics and machine learning, the sparsity principle is used to perform model selection -- that is, automatically selecting a simple model among a large collection of them. In signal processing, sparse coding consists of representing data with linear combinations of a few dictionary elements. Subsequently, the corresponding tools have been widely adopted by several scientific communities such as neuroscience, bioinformatics, or computer vision. The goal of this monograph is to offer a self-contained view of sparse modeling for visual recognition and image processing. More specifically, we focus on applications where the dictionary is learned and adapted to data, yielding a compact representation that has been successful in various contexts.

Deep Learning through Sparse and Low-Rank Modeling

Deep Learning through Sparse and Low-Rank Modeling PDF Author: Zhangyang Wang
Publisher: Academic Press
ISBN: 0128136596
Category : Computers
Languages : en
Pages : 296

Get Book Here

Book Description
Deep Learning through Sparse Representation and Low-Rank Modeling bridges classical sparse and low rank models-those that emphasize problem-specific Interpretability-with recent deep network models that have enabled a larger learning capacity and better utilization of Big Data. It shows how the toolkit of deep learning is closely tied with the sparse/low rank methods and algorithms, providing a rich variety of theoretical and analytic tools to guide the design and interpretation of deep learning models. The development of the theory and models is supported by a wide variety of applications in computer vision, machine learning, signal processing, and data mining. This book will be highly useful for researchers, graduate students and practitioners working in the fields of computer vision, machine learning, signal processing, optimization and statistics.

Sparse and Redundant Representations

Sparse and Redundant Representations PDF Author: Michael Elad
Publisher: Springer Science & Business Media
ISBN: 1441970118
Category : Mathematics
Languages : en
Pages : 376

Get Book Here

Book Description
A long long time ago, echoing philosophical and aesthetic principles that existed since antiquity, William of Ockham enounced the principle of parsimony, better known today as Ockham’s razor: “Entities should not be multiplied without neces sity. ” This principle enabled scientists to select the ”best” physical laws and theories to explain the workings of the Universe and continued to guide scienti?c research, leadingtobeautifulresultsliketheminimaldescriptionlength approachtostatistical inference and the related Kolmogorov complexity approach to pattern recognition. However, notions of complexity and description length are subjective concepts anddependonthelanguage“spoken”whenpresentingideasandresults. The?eldof sparse representations, that recently underwent a Big Bang like expansion, explic itly deals with the Yin Yang interplay between the parsimony of descriptions and the “language” or “dictionary” used in them, and it became an extremely exciting area of investigation. It already yielded a rich crop of mathematically pleasing, deep and beautiful results that quickly translated into a wealth of practical engineering applications. You are holding in your hands the ?rst guide book to Sparseland, and I am sure you’ll ?nd in it both familiar and new landscapes to see and admire, as well as ex cellent pointers that will help you ?nd further valuable treasures. Enjoy the journey to Sparseland! Haifa, Israel, December 2009 Alfred M. Bruckstein vii Preface This book was originally written to serve as the material for an advanced one semester (fourteen 2 hour lectures) graduate course for engineering students at the Technion, Israel.

Biologically Inspired Computer Vision

Biologically Inspired Computer Vision PDF Author: Gabriel Cristobal
Publisher: John Wiley & Sons
ISBN: 3527680497
Category : Technology & Engineering
Languages : en
Pages : 480

Get Book Here

Book Description
As the state-of-the-art imaging technologies became more and more advanced, yielding scientific data at unprecedented detail and volume, the need to process and interpret all the data has made image processing and computer vision increasingly important. Sources of data that have to be routinely dealt with today's applications include video transmission, wireless communication, automatic fingerprint processing, massive databanks, non-weary and accurate automatic airport screening, robust night vision, just to name a few. Multidisciplinary inputs from other disciplines such as physics, computational neuroscience, cognitive science, mathematics, and biology will have a fundamental impact in the progress of imaging and vision sciences. One of the advantages of the study of biological organisms is to devise very different type of computational paradigms by implementing a neural network with a high degree of local connectivity. This is a comprehensive and rigorous reference in the area of biologically motivated vision sensors. The study of biologically visual systems can be considered as a two way avenue. On the one hand, biological organisms can provide a source of inspiration for new computational efficient and robust vision models and on the other hand machine vision approaches can provide new insights for understanding biological visual systems. Along the different chapters, this book covers a wide range of topics from fundamental to more specialized topics, including visual analysis based on a computational level, hardware implementation, and the design of new more advanced vision sensors. The last two sections of the book provide an overview of a few representative applications and current state of the art of the research in this area. This makes it a valuable book for graduate, Master, PhD students and also researchers in the field.

Machine Learning in Medical Imaging

Machine Learning in Medical Imaging PDF Author: Luping Zhou
Publisher: Springer
ISBN: 331924888X
Category : Computers
Languages : en
Pages : 352

Get Book Here

Book Description
This book constitutes the proceedings of the 6th International Workshop on Machine Learning in Medical Imaging, MLMI 2015, held in conjunction with MICCAI 2015, in Munich in October 2015. The 40 full papers presented in this volume were carefully reviewed and selected from 69 submissions. The workshop focuses on major trends and challenges in the area of machine learning in medical imaging and present works aimed to identify new cutting-edge techniques and their use in medical imaging.

Computer Vision – ECCV 2012

Computer Vision – ECCV 2012 PDF Author: Andrew Fitzgibbon
Publisher: Springer
ISBN: 3642337090
Category : Computers
Languages : en
Pages : 909

Get Book Here

Book Description
The seven-volume set comprising LNCS volumes 7572-7578 constitutes the refereed proceedings of the 12th European Conference on Computer Vision, ECCV 2012, held in Florence, Italy, in October 2012. The 408 revised papers presented were carefully reviewed and selected from 1437 submissions. The papers are organized in topical sections on geometry, 2D and 3D shapes, 3D reconstruction, visual recognition and classification, visual features and image matching, visual monitoring: action and activities, models, optimisation, learning, visual tracking and image registration, photometry: lighting and colour, and image segmentation.

Optimization with Sparsity-Inducing Penalties

Optimization with Sparsity-Inducing Penalties PDF Author: Francis Bach
Publisher:
ISBN: 9781601985101
Category : Computers
Languages : en
Pages : 124

Get Book Here

Book Description
Sparse estimation methods are aimed at using or obtaining parsimonious representations of data or models. They were first dedicated to linear variable selection but numerous extensions have now emerged such as structured sparsity or kernel selection. It turns out that many of the related estimation problems can be cast as convex optimization problems by regularizing the empirical risk with appropriate nonsmooth norms. Optimization with Sparsity-Inducing Penalties presents optimization tools and techniques dedicated to such sparsity-inducing penalties from a general perspective. It covers proximal methods, block-coordinate descent, reweighted ?2-penalized techniques, working-set and homotopy methods, as well as non-convex formulations and extensions, and provides an extensive set of experiments to compare various algorithms from a computational point of view. The presentation of Optimization with Sparsity-Inducing Penalties is essentially based on existing literature, but the process of constructing a general framework leads naturally to new results, connections and points of view. It is an ideal reference on the topic for anyone working in machine learning and related areas.

Research Developments in Computer Vision and Image Processing: Methodologies and Applications

Research Developments in Computer Vision and Image Processing: Methodologies and Applications PDF Author: Srivastava, Rajeev
Publisher: IGI Global
ISBN: 1466645598
Category : Computers
Languages : en
Pages : 451

Get Book Here

Book Description
Similar to the way in which computer vision and computer graphics act as the dual fields that connect image processing in modern computer science, the field of image processing can be considered a crucial middle road between the vision and graphics fields. Research Developments in Computer Vision and Image Processing: Methodologies and Applications brings together various research methodologies and trends in emerging areas of application of computer vision and image processing. This book is useful for students, researchers, scientists, and engineers interested in the research developments of this rapidly growing field.

Generalized Principal Component Analysis

Generalized Principal Component Analysis PDF Author: René Vidal
Publisher: Springer
ISBN: 0387878114
Category : Science
Languages : en
Pages : 590

Get Book Here

Book Description
This book provides a comprehensive introduction to the latest advances in the mathematical theory and computational tools for modeling high-dimensional data drawn from one or multiple low-dimensional subspaces (or manifolds) and potentially corrupted by noise, gross errors, or outliers. This challenging task requires the development of new algebraic, geometric, statistical, and computational methods for efficient and robust estimation and segmentation of one or multiple subspaces. The book also presents interesting real-world applications of these new methods in image processing, image and video segmentation, face recognition and clustering, and hybrid system identification etc. This book is intended to serve as a textbook for graduate students and beginning researchers in data science, machine learning, computer vision, image and signal processing, and systems theory. It contains ample illustrations, examples, and exercises and is made largely self-contained with three Appendices which survey basic concepts and principles from statistics, optimization, and algebraic-geometry used in this book. René Vidal is a Professor of Biomedical Engineering and Director of the Vision Dynamics and Learning Lab at The Johns Hopkins University. Yi Ma is Executive Dean and Professor at the School of Information Science and Technology at ShanghaiTech University. S. Shankar Sastry is Dean of the College of Engineering, Professor of Electrical Engineering and Computer Science and Professor of Bioengineering at the University of California, Berkeley.