The Nonlinear Diffusion Equation

The Nonlinear Diffusion Equation PDF Author: J.M. Burgers
Publisher: Springer Science & Business Media
ISBN: 940101745X
Category : Mathematics
Languages : en
Pages : 183

Get Book Here

Book Description
Since the 'Introduction' to the main text gives an account of the way in which the problems treated in the following pages originated, this 'Preface' may be limited to an acknowledgement of the support the work has received. It started during the pe riod when I was professor of aero- and hydrodynamics at the Technical University in Delft, Netherlands, and many discussions with colleagues ha ve in:fluenced its devel opment. Oftheir names I mention here only that ofH. A. Kramers. Papers No. 1-13 ofthe list given at the end ofthe text were written during that period. Severa! ofthese were attempts to explore ideas which later had to be abandoned, but gradually a line of thought emerged which promised more definite results. This line began to come to the foreground in pa per No. 3 (1939}, while a preliminary formulation ofthe results was given in paper No. 12 (1954}. At that time, however, there still was missing a practica! method for manipulating a certain distribution function of central interest. A six months stay at the Hydrodynamics Laboratories ofthe California Institute of Technology, Pasadena, California (1950-1951}, was supported by a Contract with the Department of the Air F orce, N o. AF 33(038}-17207. A course of lectures was given during this period, which were published in typescript under the title 'On Turbulent Fluid Motion', as Report No. E-34. 1, July 1951, of the Hydrodynamics Laboratory.

The Nonlinear Diffusion Equation

The Nonlinear Diffusion Equation PDF Author: J.M. Burgers
Publisher: Springer Science & Business Media
ISBN: 940101745X
Category : Mathematics
Languages : en
Pages : 183

Get Book Here

Book Description
Since the 'Introduction' to the main text gives an account of the way in which the problems treated in the following pages originated, this 'Preface' may be limited to an acknowledgement of the support the work has received. It started during the pe riod when I was professor of aero- and hydrodynamics at the Technical University in Delft, Netherlands, and many discussions with colleagues ha ve in:fluenced its devel opment. Oftheir names I mention here only that ofH. A. Kramers. Papers No. 1-13 ofthe list given at the end ofthe text were written during that period. Severa! ofthese were attempts to explore ideas which later had to be abandoned, but gradually a line of thought emerged which promised more definite results. This line began to come to the foreground in pa per No. 3 (1939}, while a preliminary formulation ofthe results was given in paper No. 12 (1954}. At that time, however, there still was missing a practica! method for manipulating a certain distribution function of central interest. A six months stay at the Hydrodynamics Laboratories ofthe California Institute of Technology, Pasadena, California (1950-1951}, was supported by a Contract with the Department of the Air F orce, N o. AF 33(038}-17207. A course of lectures was given during this period, which were published in typescript under the title 'On Turbulent Fluid Motion', as Report No. E-34. 1, July 1951, of the Hydrodynamics Laboratory.

Problems in Nonlinear Diffusion

Problems in Nonlinear Diffusion PDF Author: Antonio Fasano
Publisher: Springer
ISBN: 3540473521
Category : Mathematics
Languages : en
Pages : 183

Get Book Here

Book Description


Nonlinear Diffusion Equations

Nonlinear Diffusion Equations PDF Author: Zhuoqun Wu
Publisher: World Scientific
ISBN: 9810247184
Category : Mathematics
Languages : en
Pages : 521

Get Book Here

Book Description
Nonlinear diffusion equations, an important class of parabolic equations, come from a variety of diffusion phenomena which appear widely in nature. They are suggested as mathematical models of physical problems in many fields, such as filtration, phase transition, biochemistry and dynamics of biological groups. In many cases, the equations possess degeneracy or singularity. The appearance of degeneracy or singularity makes the study more involved and challenging. Many new ideas and methods have been developed to overcome the special difficulties caused by the degeneracy and singularity, which enrich the theory of partial differential equations.This book provides a comprehensive presentation of the basic problems, main results and typical methods for nonlinear diffusion equations with degeneracy. Some results for equations with singularity are touched upon.

Degenerate Nonlinear Diffusion Equations

Degenerate Nonlinear Diffusion Equations PDF Author: Angelo Favini
Publisher: Springer
ISBN: 3642282857
Category : Mathematics
Languages : en
Pages : 165

Get Book Here

Book Description
The aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain. From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asymptotic behaviour, discretization schemes, coefficient identification, and to introduce relevant solving methods for each of them.

Nonlinear Diffusion Problems

Nonlinear Diffusion Problems PDF Author: Centro internazionale matematico estivo
Publisher: Springer
ISBN:
Category : Science
Languages : en
Pages : 212

Get Book Here

Book Description


Nonlinear Diffusion of Electromagnetic Fields

Nonlinear Diffusion of Electromagnetic Fields PDF Author:
Publisher: Elsevier
ISBN: 0080537693
Category : Science
Languages : en
Pages : 429

Get Book Here

Book Description
Nonlinear Diffusion of Electromagnetic Fields covers applications of the phenomena of non-linear diffusion of electromagnetic fields, such as magnetic recording, electromagnetic shielding and non-destructive testing, development of CAD software, and the design of magnetic components in electrical machinery. The material presented has direct applications to the analysis of eddy currents in magnetically nonlinear and hysteretic conductors and to the study of magnetization processes in electrically nonlinear superconductors. This book will provide very valuable technical and scientific information to a broad audience of engineers and researchers who are involved in these diverse areas. - Contains extensive use of analytical techniques for the solution of nonlinear problems of electromagnetic field diffusion - Simple analytical formulas for surface impedances of nonlinear and hysteretic media - Analysis of nonlinear diffusion for linear, circular and elliptical polarizations of electromagnetic fields - Novel and extensive analysis of eddy current losses in steel laminations for unidirectional and rotating magnetic fields - Preisach approach to the modeling of eddy current hysteresis and superconducting hysteresis - Extensive study of nonlinear diffusion in superconductors with gradual resistive transitions (scalar and vertorial problems)

Some Problems on Nonlinear Hyperbolic Equations and Applications

Some Problems on Nonlinear Hyperbolic Equations and Applications PDF Author: Yuejun Peng
Publisher: World Scientific
ISBN: 9814322881
Category : Mathematics
Languages : en
Pages : 464

Get Book Here

Book Description
This volume is composed of two parts: Mathematical and Numerical Analysis for Strongly Nonlinear Plasma Models and Exact Controllability and Observability for Quasilinear Hyperbolic Systems and Applications. It presents recent progress and results obtained in the domains related to both subjects without attaching much importance to the details of proofs but rather to difficulties encountered, to open problems and possible ways to be exploited. It will be very useful for promoting further study on some important problems in the future.

Nonlocal Diffusion Problems

Nonlocal Diffusion Problems PDF Author: Fuensanta Andreu-Vaillo
Publisher: American Mathematical Soc.
ISBN: 0821852302
Category : Mathematics
Languages : en
Pages : 274

Get Book Here

Book Description
Nonlocal diffusion problems arise in a wide variety of applications, including biology, image processing, particle systems, coagulation models, and mathematical finance. These types of problems are also of great interest for their purely mathematical content. This book presents recent results on nonlocal evolution equations with different boundary conditions, starting with the linear theory and moving to nonlinear cases, including two nonlocal models for the evolution of sandpiles. Both existence and uniqueness of solutions are considered, as well as their asymptotic behaviour. Moreover, the authors present results concerning limits of solutions of the nonlocal equations as a rescaling parameter tends to zero. With these limit procedures the most frequently used diffusion models are recovered: the heat equation, the $p$-Laplacian evolution equation, the porous media equation, the total variation flow, a convection-diffusion equation and the local models for the evolution of sandpiles due to Aronsson-Evans-Wu and Prigozhin. Readers are assumed to be familiar with the basic concepts and techniques of functional analysis and partial differential equations. The text is otherwise self-contained, with the exposition emphasizing an intuitive understanding and results given with full proofs. It is suitable for graduate students or researchers. The authors cover a subject that has received a great deal of attention in recent years. The book is intended as a reference tool for a general audience in analysis and PDEs, including mathematicians, engineers, physicists, biologists, and others interested in nonlocal diffusion problems.

Semigroup Approach To Nonlinear Diffusion Equations

Semigroup Approach To Nonlinear Diffusion Equations PDF Author: Viorel Barbu
Publisher: World Scientific
ISBN: 981124653X
Category : Mathematics
Languages : en
Pages : 221

Get Book Here

Book Description
This book is concerned with functional methods (nonlinear semigroups of contractions, nonlinear m-accretive operators and variational techniques) in the theory of nonlinear partial differential equations of elliptic and parabolic type. In particular, applications to the existence theory of nonlinear parabolic equations, nonlinear Fokker-Planck equations, phase transition and free boundary problems are presented in details. Emphasis is put on functional methods in partial differential equations (PDE) and less on specific results.

The Dynamics of Nonlinear Reaction-Diffusion Equations with Small Lévy Noise

The Dynamics of Nonlinear Reaction-Diffusion Equations with Small Lévy Noise PDF Author: Arnaud Debussche
Publisher: Springer
ISBN: 3319008285
Category : Mathematics
Languages : en
Pages : 175

Get Book Here

Book Description
This work considers a small random perturbation of alpha-stable jump type nonlinear reaction-diffusion equations with Dirichlet boundary conditions over an interval. It has two stable points whose domains of attraction meet in a separating manifold with several saddle points. Extending a method developed by Imkeller and Pavlyukevich it proves that in contrast to a Gaussian perturbation, the expected exit and transition times between the domains of attraction depend polynomially on the noise intensity in the small intensity limit. Moreover the solution exhibits metastable behavior: there is a polynomial time scale along which the solution dynamics correspond asymptotically to the dynamic behavior of a finite-state Markov chain switching between the stable states.