Author: Glenn A. Kramer
Publisher: MIT Press
ISBN: 9780262111645
Category : Computers
Languages : en
Pages : 314
Book Description
Solving Geometric Constraints records and explains the formal basis for graphical analysis techniques that have been used for decades in engineering disciplines. It describes a novel computer implementation of a 3D graphical analysis method - degrees of freedom analysis - for solving geometric constraint problems of the type encountered in the kinematic analysis of mechanical linkages, providing the best computational bounds yet achieved for this class of problems. The technique allows for the design of algorithms that provide signification speed increases and will foster the development of interactive software tools for the simulation, optimization, and design of complex mechanical devices as well as provide leverage in other geometric domains.
Solving Geometric Constraint Systems
Computing in Euclidean Geometry
Author: Ding-Zhu Du
Publisher: World Scientific
ISBN: 9789810218768
Category : Mathematics
Languages : en
Pages : 520
Book Description
This book is a collection of surveys and exploratory articles about recent developments in the field of computational Euclidean geometry. Topics covered include the history of Euclidean geometry, Voronoi diagrams, randomized geometric algorithms, computational algebra, triangulations, machine proofs, topological designs, finite-element mesh, computer-aided geometric designs and Steiner trees. This second edition contains three new surveys covering geometric constraint solving, computational geometry and the exact computation paradigm.
Publisher: World Scientific
ISBN: 9789810218768
Category : Mathematics
Languages : en
Pages : 520
Book Description
This book is a collection of surveys and exploratory articles about recent developments in the field of computational Euclidean geometry. Topics covered include the history of Euclidean geometry, Voronoi diagrams, randomized geometric algorithms, computational algebra, triangulations, machine proofs, topological designs, finite-element mesh, computer-aided geometric designs and Steiner trees. This second edition contains three new surveys covering geometric constraint solving, computational geometry and the exact computation paradigm.
Handbook of Geometric Constraint Systems Principles
Author: Meera Sitharam
Publisher: CRC Press
ISBN: 1351647431
Category : Mathematics
Languages : en
Pages : 711
Book Description
The Handbook of Geometric Constraint Systems Principles is an entry point to the currently used principal mathematical and computational tools and techniques of the geometric constraint system (GCS). It functions as a single source containing the core principles and results, accessible to both beginners and experts. The handbook provides a guide for students learning basic concepts, as well as experts looking to pinpoint specific results or approaches in the broad landscape. As such, the editors created this handbook to serve as a useful tool for navigating the varied concepts, approaches and results found in GCS research. Key Features: A comprehensive reference handbook authored by top researchers Includes fundamentals and techniques from multiple perspectives that span several research communities Provides recent results and a graded program of open problems and conjectures Can be used for senior undergraduate or graduate topics course introduction to the area Detailed list of figures and tables About the Editors: Meera Sitharam is currently an Associate Professor at the University of Florida’s Department of Computer & Information Science and Engineering. She received her Ph.D. at the University of Wisconsin, Madison. Audrey St. John is an Associate Professor of Computer Science at Mount Holyoke College, who received her Ph. D. from UMass Amherst. Jessica Sidman is a Professor of Mathematics on the John S. Kennedy Foundation at Mount Holyoke College. She received her Ph.D. from the University of Michigan.
Publisher: CRC Press
ISBN: 1351647431
Category : Mathematics
Languages : en
Pages : 711
Book Description
The Handbook of Geometric Constraint Systems Principles is an entry point to the currently used principal mathematical and computational tools and techniques of the geometric constraint system (GCS). It functions as a single source containing the core principles and results, accessible to both beginners and experts. The handbook provides a guide for students learning basic concepts, as well as experts looking to pinpoint specific results or approaches in the broad landscape. As such, the editors created this handbook to serve as a useful tool for navigating the varied concepts, approaches and results found in GCS research. Key Features: A comprehensive reference handbook authored by top researchers Includes fundamentals and techniques from multiple perspectives that span several research communities Provides recent results and a graded program of open problems and conjectures Can be used for senior undergraduate or graduate topics course introduction to the area Detailed list of figures and tables About the Editors: Meera Sitharam is currently an Associate Professor at the University of Florida’s Department of Computer & Information Science and Engineering. She received her Ph.D. at the University of Wisconsin, Madison. Audrey St. John is an Associate Professor of Computer Science at Mount Holyoke College, who received her Ph. D. from UMass Amherst. Jessica Sidman is a Professor of Mathematics on the John S. Kennedy Foundation at Mount Holyoke College. She received her Ph.D. from the University of Michigan.
Geometric Constraint Solving and Applications
Author: Beat Brüderlin
Publisher: Springer Science & Business Media
ISBN: 3642588980
Category : Computers
Languages : en
Pages : 306
Book Description
Geometric constraint programming increases flexibility in CAD design specifications and leads to new conceptual design paradigms. This volume features a collection of work by leading researchers developing the various aspects of constraint-based product modeling. In an introductory chapter the role of constraints in CAD systems of the future and their implications for the STEP data exchange format are discussed. The main part of the book deals with the application of constraints to conceptual and collaborative design, as well as state-of-the-art mathematical and algorithmic methods for constraint solving.
Publisher: Springer Science & Business Media
ISBN: 3642588980
Category : Computers
Languages : en
Pages : 306
Book Description
Geometric constraint programming increases flexibility in CAD design specifications and leads to new conceptual design paradigms. This volume features a collection of work by leading researchers developing the various aspects of constraint-based product modeling. In an introductory chapter the role of constraints in CAD systems of the future and their implications for the STEP data exchange format are discussed. The main part of the book deals with the application of constraints to conceptual and collaborative design, as well as state-of-the-art mathematical and algorithmic methods for constraint solving.
Handbook of Geometric Constraint Systems Principles
Author: Meera Sitharam
Publisher: CRC Press
ISBN: 1498738923
Category : Mathematics
Languages : en
Pages : 605
Book Description
The Handbook of Geometric Constraint Systems Principles is an entry point to the currently used principal mathematical and computational tools and techniques of the geometric constraint system (GCS). It functions as a single source containing the core principles and results, accessible to both beginners and experts. The handbook provides a guide for students learning basic concepts, as well as experts looking to pinpoint specific results or approaches in the broad landscape. As such, the editors created this handbook to serve as a useful tool for navigating the varied concepts, approaches and results found in GCS research. Key Features: A comprehensive reference handbook authored by top researchers Includes fundamentals and techniques from multiple perspectives that span several research communities Provides recent results and a graded program of open problems and conjectures Can be used for senior undergraduate or graduate topics course introduction to the area Detailed list of figures and tables About the Editors: Meera Sitharam is currently an Associate Professor at the University of Florida’s Department of Computer & Information Science and Engineering. She received her Ph.D. at the University of Wisconsin, Madison. Audrey St. John is an Associate Professor of Computer Science at Mount Holyoke College, who received her Ph. D. from UMass Amherst. Jessica Sidman is a Professor of Mathematics on the John S. Kennedy Foundation at Mount Holyoke College. She received her Ph.D. from the University of Michigan.
Publisher: CRC Press
ISBN: 1498738923
Category : Mathematics
Languages : en
Pages : 605
Book Description
The Handbook of Geometric Constraint Systems Principles is an entry point to the currently used principal mathematical and computational tools and techniques of the geometric constraint system (GCS). It functions as a single source containing the core principles and results, accessible to both beginners and experts. The handbook provides a guide for students learning basic concepts, as well as experts looking to pinpoint specific results or approaches in the broad landscape. As such, the editors created this handbook to serve as a useful tool for navigating the varied concepts, approaches and results found in GCS research. Key Features: A comprehensive reference handbook authored by top researchers Includes fundamentals and techniques from multiple perspectives that span several research communities Provides recent results and a graded program of open problems and conjectures Can be used for senior undergraduate or graduate topics course introduction to the area Detailed list of figures and tables About the Editors: Meera Sitharam is currently an Associate Professor at the University of Florida’s Department of Computer & Information Science and Engineering. She received her Ph.D. at the University of Wisconsin, Madison. Audrey St. John is an Associate Professor of Computer Science at Mount Holyoke College, who received her Ph. D. from UMass Amherst. Jessica Sidman is a Professor of Mathematics on the John S. Kennedy Foundation at Mount Holyoke College. She received her Ph.D. from the University of Michigan.
Geometric Programming for Communication Systems
Author: Mung Chiang
Publisher: Now Publishers Inc
ISBN: 9781933019093
Category : Computers
Languages : en
Pages : 172
Book Description
Recently Geometric Programming has been applied to study a variety of problems in the analysis and design of communication systems from information theory and queuing theory to signal processing and network protocols. Geometric Programming for Communication Systems begins its comprehensive treatment of the subject by providing an in-depth tutorial on the theory, algorithms, and modeling methods of Geometric Programming. It then gives a systematic survey of the applications of Geometric Programming to the study of communication systems. It collects in one place various published results in this area, which are currently scattered in several books and many research papers, as well as to date unpublished results. Geometric Programming for Communication Systems is intended for researchers and students who wish to have a comprehensive starting point for understanding the theory and applications of geometric programming in communication systems.
Publisher: Now Publishers Inc
ISBN: 9781933019093
Category : Computers
Languages : en
Pages : 172
Book Description
Recently Geometric Programming has been applied to study a variety of problems in the analysis and design of communication systems from information theory and queuing theory to signal processing and network protocols. Geometric Programming for Communication Systems begins its comprehensive treatment of the subject by providing an in-depth tutorial on the theory, algorithms, and modeling methods of Geometric Programming. It then gives a systematic survey of the applications of Geometric Programming to the study of communication systems. It collects in one place various published results in this area, which are currently scattered in several books and many research papers, as well as to date unpublished results. Geometric Programming for Communication Systems is intended for researchers and students who wish to have a comprehensive starting point for understanding the theory and applications of geometric programming in communication systems.
Geometric Design of Linkages
Author: J. Michael McCarthy
Publisher: Springer Science & Business Media
ISBN: 1441978925
Category : Science
Languages : en
Pages : 466
Book Description
This book is an introduction to the mathematical theory of design for articulated mechanical systems known as linkages. The focus is on sizing mechanical constraints that guide the movement of a work piece, or end-effector, of the system. The function of the device is prescribed as a set of positions to be reachable by the end-effector; and the mechanical constraints are formed by joints that limit relative movement. The goal is to find all the devices that can achieve a specific task. Formulated in this way the design problem is purely geometric in character. Robot manipulators, walking machines, and mechanical hands are examples of articulated mechanical systems that rely on simple mechanical constraints to provide a complex workspace for the end- effector. The principles presented in this book form the foundation for a design theory for these devices. The emphasis, however, is on articulated systems with fewer degrees of freedom than that of the typical robotic system, and therefore, less complexity. This book will be useful to mathematics, engineering and computer science departments teaching courses on mathematical modeling of robotics and other articulated mechanical systems. This new edition includes research results of the past decade on the synthesis of multi loop planar and spherical linkages, and the use of homotopy methods and Clifford algebras in the synthesis of spatial serial chains. One new chapter on the synthesis of spatial serial chains introduces numerical homotopy and the linear product decomposition of polynomial systems. The second new chapter introduces the Clifford algebra formulation of the kinematics equations of serial chain robots. Examples are use throughout to demonstrate the theory.
Publisher: Springer Science & Business Media
ISBN: 1441978925
Category : Science
Languages : en
Pages : 466
Book Description
This book is an introduction to the mathematical theory of design for articulated mechanical systems known as linkages. The focus is on sizing mechanical constraints that guide the movement of a work piece, or end-effector, of the system. The function of the device is prescribed as a set of positions to be reachable by the end-effector; and the mechanical constraints are formed by joints that limit relative movement. The goal is to find all the devices that can achieve a specific task. Formulated in this way the design problem is purely geometric in character. Robot manipulators, walking machines, and mechanical hands are examples of articulated mechanical systems that rely on simple mechanical constraints to provide a complex workspace for the end- effector. The principles presented in this book form the foundation for a design theory for these devices. The emphasis, however, is on articulated systems with fewer degrees of freedom than that of the typical robotic system, and therefore, less complexity. This book will be useful to mathematics, engineering and computer science departments teaching courses on mathematical modeling of robotics and other articulated mechanical systems. This new edition includes research results of the past decade on the synthesis of multi loop planar and spherical linkages, and the use of homotopy methods and Clifford algebras in the synthesis of spatial serial chains. One new chapter on the synthesis of spatial serial chains introduces numerical homotopy and the linear product decomposition of polynomial systems. The second new chapter introduces the Clifford algebra formulation of the kinematics equations of serial chain robots. Examples are use throughout to demonstrate the theory.
Geometric Modeling: Techniques, Applications, Systems and Tools
Author: Muhammad Sarfraz
Publisher: Springer Science & Business Media
ISBN: 9401716897
Category : Computers
Languages : en
Pages : 449
Book Description
Computer Aided techniques, Applications, Systems and tools for Geometric Modeling are extremely useful in a number of academic and industrial settings. Specifically, Computer Aided Geometric Modeling (CAGM) plays a significant role in the construction of - signing and manufacturing of various objects. In addition to its cri- cal importance in the traditional fields of automobile and aircraft manufacturing, shipbuilding, and general product design, more - cently, the CAGM methods have also proven to be indispensable in a variety of modern industries, including computer vision, robotics, medical imaging, visualization, and even media. This book aims to provide a valuable source, which focuses on - terdisciplinary methods and affiliate research in the area. It aims to provide the user community with a variety of Geometric Modeling techniques, Applications, systems and tools necessary for various real life problems in the areas such as: Font Design Medical Visualization Scientific Data Visualization Archaeology Toon Rendering Virtual Reality Body Simulation It also aims to collect and disseminate information in various dis- plines including: Curve and Surface Fitting Geometric Algorithms Scientific Visualization Shape Abstraction and Modeling Intelligent CAD Systems Computational Geometry Solid Modeling v Shape Analysis and Description Industrial Applications The major goal of this book is to stimulate views and provide a source where researchers and practitioners can find the latest dev- opments in the field of Geometric Modeling.
Publisher: Springer Science & Business Media
ISBN: 9401716897
Category : Computers
Languages : en
Pages : 449
Book Description
Computer Aided techniques, Applications, Systems and tools for Geometric Modeling are extremely useful in a number of academic and industrial settings. Specifically, Computer Aided Geometric Modeling (CAGM) plays a significant role in the construction of - signing and manufacturing of various objects. In addition to its cri- cal importance in the traditional fields of automobile and aircraft manufacturing, shipbuilding, and general product design, more - cently, the CAGM methods have also proven to be indispensable in a variety of modern industries, including computer vision, robotics, medical imaging, visualization, and even media. This book aims to provide a valuable source, which focuses on - terdisciplinary methods and affiliate research in the area. It aims to provide the user community with a variety of Geometric Modeling techniques, Applications, systems and tools necessary for various real life problems in the areas such as: Font Design Medical Visualization Scientific Data Visualization Archaeology Toon Rendering Virtual Reality Body Simulation It also aims to collect and disseminate information in various dis- plines including: Curve and Surface Fitting Geometric Algorithms Scientific Visualization Shape Abstraction and Modeling Intelligent CAD Systems Computational Geometry Solid Modeling v Shape Analysis and Description Industrial Applications The major goal of this book is to stimulate views and provide a source where researchers and practitioners can find the latest dev- opments in the field of Geometric Modeling.
Fuzzy Geometric Programming
Author: Bing-Yuan Cao
Publisher: Springer Science & Business Media
ISBN: 9781402008764
Category : Business & Economics
Languages : en
Pages : 296
Book Description
The book gives readers a thorough understanding of fuzzy geometric programming, a field that was originated by the author. It is organized into two parts: theory and applications. The former aims at development of issues including fuzzy posynomial geometric programming and its dual form, a fuzzy reverse posynomial geometric programming and its dual form and a geometric programming model with fuzzy coefficients and fuzzy variables. The latter is intended to discuss problems in applications, including antinomy in fuzzy geometric programming, as well as practical examples from the power of industry and the administration of postal services. Audience: Researchers, doctoral and post-doctoral students working in fuzzy mathematics, applied mathematics, engineering, operations research, and economics.
Publisher: Springer Science & Business Media
ISBN: 9781402008764
Category : Business & Economics
Languages : en
Pages : 296
Book Description
The book gives readers a thorough understanding of fuzzy geometric programming, a field that was originated by the author. It is organized into two parts: theory and applications. The former aims at development of issues including fuzzy posynomial geometric programming and its dual form, a fuzzy reverse posynomial geometric programming and its dual form and a geometric programming model with fuzzy coefficients and fuzzy variables. The latter is intended to discuss problems in applications, including antinomy in fuzzy geometric programming, as well as practical examples from the power of industry and the administration of postal services. Audience: Researchers, doctoral and post-doctoral students working in fuzzy mathematics, applied mathematics, engineering, operations research, and economics.
Automated Deduction in Geometry
Author: Franz Winkler
Publisher: Springer Science & Business Media
ISBN: 3540209271
Category : Computers
Languages : en
Pages : 238
Book Description
This book constitutes the thoroughly refereed post-proceedings of the 4th International Workshop on Automated Deduction in Geometry, ADG 2002, held at Hagenberg Castle, Austria in September 2002. The 13 revised full papers presented were carefully selected during two rounds of reviewing and improvement. Among the issues addressed are theoretical and methodological topics, such as the resolution of singularities, algebraic geometry and computer algebra; various geometric theorem proving systems are explored; and applications of automated deduction in geometry are demonstrated in fields like computer-aided design and robotics.
Publisher: Springer Science & Business Media
ISBN: 3540209271
Category : Computers
Languages : en
Pages : 238
Book Description
This book constitutes the thoroughly refereed post-proceedings of the 4th International Workshop on Automated Deduction in Geometry, ADG 2002, held at Hagenberg Castle, Austria in September 2002. The 13 revised full papers presented were carefully selected during two rounds of reviewing and improvement. Among the issues addressed are theoretical and methodological topics, such as the resolution of singularities, algebraic geometry and computer algebra; various geometric theorem proving systems are explored; and applications of automated deduction in geometry are demonstrated in fields like computer-aided design and robotics.