Solving Differential Equations by Multistep Initial and Boundary Value Methods

Solving Differential Equations by Multistep Initial and Boundary Value Methods PDF Author: L Brugnano
Publisher: CRC Press
ISBN: 9789056991074
Category : Mathematics
Languages : en
Pages : 438

Get Book Here

Book Description
The numerical approximation of solutions of differential equations has been, and continues to be, one of the principal concerns of numerical analysis and is an active area of research. The new generation of parallel computers have provoked a reconsideration of numerical methods. This book aims to generalize classical multistep methods for both initial and boundary value problems; to present a self-contained theory which embraces and generalizes the classical Dahlquist theory; to treat nonclassical problems, such as Hamiltonian problems and the mesh selection; and to select appropriate methods for a general purpose software capable of solving a wide range of problems efficiently, even on parallel computers.

Solving Differential Equations by Multistep Initial and Boundary Value Methods

Solving Differential Equations by Multistep Initial and Boundary Value Methods PDF Author: L Brugnano
Publisher: CRC Press
ISBN: 9789056991074
Category : Mathematics
Languages : en
Pages : 438

Get Book Here

Book Description
The numerical approximation of solutions of differential equations has been, and continues to be, one of the principal concerns of numerical analysis and is an active area of research. The new generation of parallel computers have provoked a reconsideration of numerical methods. This book aims to generalize classical multistep methods for both initial and boundary value problems; to present a self-contained theory which embraces and generalizes the classical Dahlquist theory; to treat nonclassical problems, such as Hamiltonian problems and the mesh selection; and to select appropriate methods for a general purpose software capable of solving a wide range of problems efficiently, even on parallel computers.

Numerical Solution of Initial-value Problems in Differential-algebraic Equations

Numerical Solution of Initial-value Problems in Differential-algebraic Equations PDF Author: K. E. Brenan
Publisher: SIAM
ISBN: 9781611971224
Category : Mathematics
Languages : en
Pages : 268

Get Book Here

Book Description
Many physical problems are most naturally described by systems of differential and algebraic equations. This book describes some of the places where differential-algebraic equations (DAE's) occur. The basic mathematical theory for these equations is developed and numerical methods are presented and analyzed. Examples drawn from a variety of applications are used to motivate and illustrate the concepts and techniques. This classic edition, originally published in 1989, is the only general DAE book available. It not only develops guidelines for choosing different numerical methods, it is the first book to discuss DAE codes, including the popular DASSL code. An extensive discussion of backward differentiation formulas details why they have emerged as the most popular and best understood class of linear multistep methods for general DAE's. New to this edition is a chapter that brings the discussion of DAE software up to date. The objective of this monograph is to advance and consolidate the existing research results for the numerical solution of DAE's. The authors present results on the analysis of numerical methods, and also show how these results are relevant for the solution of problems from applications. They develop guidelines for problem formulation and effective use of the available mathematical software and provide extensive references for further study.

Numerical Solution Of Ordinary And Partial Differential Equations, The (3rd Edition)

Numerical Solution Of Ordinary And Partial Differential Equations, The (3rd Edition) PDF Author: Granville Sewell
Publisher: World Scientific
ISBN: 9814635111
Category : Mathematics
Languages : en
Pages : 346

Get Book Here

Book Description
This book presents methods for the computational solution of differential equations, both ordinary and partial, time-dependent and steady-state. Finite difference methods are introduced and analyzed in the first four chapters, and finite element methods are studied in chapter five. A very general-purpose and widely-used finite element program, PDE2D, which implements many of the methods studied in the earlier chapters, is presented and documented in Appendix A.The book contains the relevant theory and error analysis for most of the methods studied, but also emphasizes the practical aspects involved in implementing the methods. Students using this book will actually see and write programs (FORTRAN or MATLAB) for solving ordinary and partial differential equations, using both finite differences and finite elements. In addition, they will be able to solve very difficult partial differential equations using the software PDE2D, presented in Appendix A. PDE2D solves very general steady-state, time-dependent and eigenvalue PDE systems, in 1D intervals, general 2D regions, and a wide range of simple 3D regions.The Windows version of PDE2D comes free with every purchase of this book. More information at www.pde2d.com/contact.

Numerical Methods for Initial Value Problems in Ordinary Differential Equations

Numerical Methods for Initial Value Problems in Ordinary Differential Equations PDF Author: Simeon Ola Fatunla
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 320

Get Book Here

Book Description


Solving Differential Equations in R

Solving Differential Equations in R PDF Author: Karline Soetaert
Publisher: Springer Science & Business Media
ISBN: 3642280706
Category : Computers
Languages : en
Pages : 258

Get Book Here

Book Description
Mathematics plays an important role in many scientific and engineering disciplines. This book deals with the numerical solution of differential equations, a very important branch of mathematics. Our aim is to give a practical and theoretical account of how to solve a large variety of differential equations, comprising ordinary differential equations, initial value problems and boundary value problems, differential algebraic equations, partial differential equations and delay differential equations. The solution of differential equations using R is the main focus of this book. It is therefore intended for the practitioner, the student and the scientist, who wants to know how to use R for solving differential equations. However, it has been our goal that non-mathematicians should at least understand the basics of the methods, while obtaining entrance into the relevant literature that provides more mathematical background. Therefore, each chapter that deals with R examples is preceded by a chapter where the theory behind the numerical methods being used is introduced. In the sections that deal with the use of R for solving differential equations, we have taken examples from a variety of disciplines, including biology, chemistry, physics, pharmacokinetics. Many examples are well-known test examples, used frequently in the field of numerical analysis.

Numerical Solution of Ordinary Differential Equations

Numerical Solution of Ordinary Differential Equations PDF Author: Kendall Atkinson
Publisher: John Wiley & Sons
ISBN: 1118164520
Category : Mathematics
Languages : en
Pages : 272

Get Book Here

Book Description
A concise introduction to numerical methodsand the mathematicalframework neededto understand their performance Numerical Solution of Ordinary Differential Equationspresents a complete and easy-to-follow introduction to classicaltopics in the numerical solution of ordinary differentialequations. The book's approach not only explains the presentedmathematics, but also helps readers understand how these numericalmethods are used to solve real-world problems. Unifying perspectives are provided throughout the text, bringingtogether and categorizing different types of problems in order tohelp readers comprehend the applications of ordinary differentialequations. In addition, the authors' collective academic experienceensures a coherent and accessible discussion of key topics,including: Euler's method Taylor and Runge-Kutta methods General error analysis for multi-step methods Stiff differential equations Differential algebraic equations Two-point boundary value problems Volterra integral equations Each chapter features problem sets that enable readers to testand build their knowledge of the presented methods, and a relatedWeb site features MATLAB® programs that facilitate theexploration of numerical methods in greater depth. Detailedreferences outline additional literature on both analytical andnumerical aspects of ordinary differential equations for furtherexploration of individual topics. Numerical Solution of Ordinary Differential Equations isan excellent textbook for courses on the numerical solution ofdifferential equations at the upper-undergraduate and beginninggraduate levels. It also serves as a valuable reference forresearchers in the fields of mathematics and engineering.

Numerical Analysis and Its Applications

Numerical Analysis and Its Applications PDF Author: Lubin Vulkov
Publisher: Springer Science & Business Media
ISBN: 9783540625988
Category : Computers
Languages : en
Pages : 628

Get Book Here

Book Description
This book constitutes the refereed proceedings of the First International Workshop on Numerical Analysis and Its Applications, WNAA'96, held in Rousse, Bulgaria, in June 1996. The 57 revised full papers presented were carefully selected and reviewed for inclusion in the volume; also included are 14 invited presentations. All in all, the book offers a wealth of new results and methods of numerical analysis applicable in computational science, particularly in computational physics and chemistry. The volume reflects that the cooperation of computer scientists, mathematicians and scientists provides new numerical tools for computational scientists and, at the same time, stimulates numerical analysis.

Ordinary Differential Equations and Integral Equations

Ordinary Differential Equations and Integral Equations PDF Author: C.T.H. Baker
Publisher: Elsevier
ISBN: 0080929559
Category : Mathematics
Languages : en
Pages : 559

Get Book Here

Book Description
/homepage/sac/cam/na2000/index.html7-Volume Set now available at special set price ! This volume contains contributions in the area of differential equations and integral equations. Many numerical methods have arisen in response to the need to solve "real-life" problems in applied mathematics, in particular problems that do not have a closed-form solution. Contributions on both initial-value problems and boundary-value problems in ordinary differential equations appear in this volume. Numerical methods for initial-value problems in ordinary differential equations fall naturally into two classes: those which use one starting value at each step (one-step methods) and those which are based on several values of the solution (multistep methods).John Butcher has supplied an expert's perspective of the development of numerical methods for ordinary differential equations in the 20th century. Rob Corless and Lawrence Shampine talk about established technology, namely software for initial-value problems using Runge-Kutta and Rosenbrock methods, with interpolants to fill in the solution between mesh-points, but the 'slant' is new - based on the question, "How should such software integrate into the current generation of Problem Solving Environments?"Natalia Borovykh and Marc Spijker study the problem of establishing upper bounds for the norm of the nth power of square matrices.The dynamical system viewpoint has been of great benefit to ODE theory and numerical methods. Related is the study of chaotic behaviour.Willy Govaerts discusses the numerical methods for the computation and continuation of equilibria and bifurcation points of equilibria of dynamical systems.Arieh Iserles and Antonella Zanna survey the construction of Runge-Kutta methods which preserve algebraic invariant functions.Valeria Antohe and Ian Gladwell present numerical experiments on solving a Hamiltonian system of Hénon and Heiles with a symplectic and a nonsymplectic method with a variety of precisions and initial conditions.Stiff differential equations first became recognized as special during the 1950s. In 1963 two seminal publications laid to the foundations for later development: Dahlquist's paper on A-stable multistep methods and Butcher's first paper on implicit Runge-Kutta methods.Ernst Hairer and Gerhard Wanner deliver a survey which retraces the discovery of the order stars as well as the principal achievements obtained by that theory.Guido Vanden Berghe, Hans De Meyer, Marnix Van Daele and Tanja Van Hecke construct exponentially fitted Runge-Kutta methods with s stages.Differential-algebraic equations arise in control, in modelling of mechanical systems and in many other fields.Jeff Cash describes a fairly recent class of formulae for the numerical solution of initial-value problems for stiff and differential-algebraic systems.Shengtai Li and Linda Petzold describe methods and software for sensitivity analysis of solutions of DAE initial-value problems.Again in the area of differential-algebraic systems, Neil Biehn, John Betts, Stephen Campbell and William Huffman present current work on mesh adaptation for DAE two-point boundary-value problems.Contrasting approaches to the question of how good an approximation is as a solution of a given equation involve (i) attempting to estimate the actual error (i.e., the difference between the true and the approximate solutions) and (ii) attempting to estimate the defect - the amount by which the approximation fails to satisfy the given equation and any side-conditions.The paper by Wayne Enright on defect control relates to carefully analyzed techniques that have been proposed both for ordinary differential equations and for delay differential equations in which an attempt is made to control an estimate of the size of the defect.Many phenomena incorporate noise, and the numerical solution of

Differential Equations with Boundary-value Problems

Differential Equations with Boundary-value Problems PDF Author: Dennis G. Zill
Publisher:
ISBN: 9780534420741
Category : Boundary value problems
Languages : en
Pages : 619

Get Book Here

Book Description
Now enhanced with the innovative DE Tools CD-ROM and the iLrn teaching and learning system, this proven text explains the "how" behind the material and strikes a balance between the analytical, qualitative, and quantitative approaches to the study of differential equations. This accessible text speaks to students through a wealth of pedagogical aids, including an abundance of examples, explanations, "Remarks" boxes, definitions, and group projects. This book was written with the student's understanding firmly in mind. Using a straightforward, readable, and helpful style, this book provides a thorough treatment of boundary-value problems and partial differential equations.

Proceedings of the Third International Conference on Computing, Mathematics and Statistics (iCMS2017)

Proceedings of the Third International Conference on Computing, Mathematics and Statistics (iCMS2017) PDF Author: Liew-Kee Kor
Publisher: Springer
ISBN: 9811372799
Category : Computers
Languages : en
Pages : 566

Get Book Here

Book Description
This book is a product of the Third International Conference on Computing, Mathematics and Statistics (iCMS2017) to be held in Langkawi in November 2017. It is divided into four sections according to the thrust areas: Computer Science, Mathematics, Statistics, and Multidisciplinary Applications. All sections sought to confront current issues that society faces today. The book brings collectively quantitative, as well as qualitative, research methods that are also suitable for future research undertakings. Researchers in Computer Science, Mathematics and Statistics can use this book as a sourcebook to enrich their research works.