Author: Roger Gregory
Publisher: CRC Press
ISBN: 1040282512
Category : Science
Languages : en
Pages : 596
Book Description
This work covers advances in the interactions of proteins with their solvent environment and provides fundamental physical information useful for the application of proteins in biotechnology and industrial processes. It discusses in detail structure, dynamic and thermodynamic aspects of protein hydration, as well as proteins in aqueous and organic solvents as they relate to protein function, stability and folding.
Protein-Solvent Interactions
Unfolded Proteins
Author:
Publisher: Elsevier
ISBN: 0080524524
Category : Science
Languages : en
Pages : 422
Book Description
A variety of complementary techniques and approaches have been used to characterize peptide and protein unfolding induced by temperature, pressure, and solvent. Volume 62, Unfolded Proteins, assembles these complementary views to develop a more complete picture of denatured peptides and proteins. The unifying observation common to all chapters is the detection of preferred backbone confirmations in experimentally accessible unfolded states. - Peptide and protein unfolding induced by temperature, pressure, and solvent - Denatured peptides and proteins - Detection of preferred backbone confirmations in experimentally accessible unfolded states
Publisher: Elsevier
ISBN: 0080524524
Category : Science
Languages : en
Pages : 422
Book Description
A variety of complementary techniques and approaches have been used to characterize peptide and protein unfolding induced by temperature, pressure, and solvent. Volume 62, Unfolded Proteins, assembles these complementary views to develop a more complete picture of denatured peptides and proteins. The unifying observation common to all chapters is the detection of preferred backbone confirmations in experimentally accessible unfolded states. - Peptide and protein unfolding induced by temperature, pressure, and solvent - Denatured peptides and proteins - Detection of preferred backbone confirmations in experimentally accessible unfolded states
Unfolded Proteins
Author:
Publisher: Academic Press
ISBN: 9780120342624
Category : Science
Languages : en
Pages : 398
Book Description
A variety of complementary techniques and approaches have been used to characterize peptide and protein unfolding induced by temperature, pressure, and solvent. Volume 62, Unfolded Proteins, assembles these complementary views to develop a more complete picture of denatured peptides and proteins. The unifying observation common to all chapters is the detection of preferred backbone confirmations in experimentally accessible unfolded states. Peptide and protein unfolding induced by temperature, pressure, and solvent Denatured peptides and proteins Detection of preferred backbone confirmations in experimentally accessible unfolded states
Publisher: Academic Press
ISBN: 9780120342624
Category : Science
Languages : en
Pages : 398
Book Description
A variety of complementary techniques and approaches have been used to characterize peptide and protein unfolding induced by temperature, pressure, and solvent. Volume 62, Unfolded Proteins, assembles these complementary views to develop a more complete picture of denatured peptides and proteins. The unifying observation common to all chapters is the detection of preferred backbone confirmations in experimentally accessible unfolded states. Peptide and protein unfolding induced by temperature, pressure, and solvent Denatured peptides and proteins Detection of preferred backbone confirmations in experimentally accessible unfolded states
Solvation Thermodynamics
Author: Arieh Y. Ben-Naim
Publisher: Springer Science & Business Media
ISBN: 1475765509
Category : Science
Languages : en
Pages : 253
Book Description
This book deals with a subject that has been studied since the beginning of physical chemistry. Despite the thousands of articles and scores of books devoted to solvation thermodynamics, I feel that some fundamen tal and well-established concepts underlying the traditional approach to this subject are not satisfactory and need revision. The main reason for this need is that solvation thermodynamics has traditionally been treated in the context of classical (macroscopic) ther modynamics alone. However, solvation is inherently a molecular pro cess, dependent upon local rather than macroscopic properties of the system. Therefore, the starting point should be based on statistical mechanical methods. For many years it has been believed that certain thermodynamic quantities, such as the standard free energy (or enthalpy or entropy) of solution, may be used as measures of the corresponding functions of solvation of a given solute in a given solvent. I first challenged this notion in a paper published in 1978 based on analysis at the molecular level. During the past ten years, I have introduced several new quantities which, in my opinion, should replace the conventional measures of solvation thermodynamics. To avoid confusing the new quantities with those referred to conventionally in the literature as standard quantities of solvation, I called these "nonconventional," "generalized," and "local" standard quantities and attempted to point out the advantages of these new quantities over the conventional ones.
Publisher: Springer Science & Business Media
ISBN: 1475765509
Category : Science
Languages : en
Pages : 253
Book Description
This book deals with a subject that has been studied since the beginning of physical chemistry. Despite the thousands of articles and scores of books devoted to solvation thermodynamics, I feel that some fundamen tal and well-established concepts underlying the traditional approach to this subject are not satisfactory and need revision. The main reason for this need is that solvation thermodynamics has traditionally been treated in the context of classical (macroscopic) ther modynamics alone. However, solvation is inherently a molecular pro cess, dependent upon local rather than macroscopic properties of the system. Therefore, the starting point should be based on statistical mechanical methods. For many years it has been believed that certain thermodynamic quantities, such as the standard free energy (or enthalpy or entropy) of solution, may be used as measures of the corresponding functions of solvation of a given solute in a given solvent. I first challenged this notion in a paper published in 1978 based on analysis at the molecular level. During the past ten years, I have introduced several new quantities which, in my opinion, should replace the conventional measures of solvation thermodynamics. To avoid confusing the new quantities with those referred to conventionally in the literature as standard quantities of solvation, I called these "nonconventional," "generalized," and "local" standard quantities and attempted to point out the advantages of these new quantities over the conventional ones.
Protein Dynamics, Function, and Design
Author: Oleg Jardetzky
Publisher: Springer Science & Business Media
ISBN: 1461548950
Category : Science
Languages : en
Pages : 227
Book Description
This volume is a collection of articles from the proceedings of the International School of Structural Biology and Magnetic Resonance 3rd Course: Protein Dynamics, Function, and Design. This NATO Advance Study Institute was held in Erice at the Ettore Majorana Centre for Scientific Culture on April 16-28, 1997. The aim of the Institute was to bring together experts applyipg different physical methods to problems of macro molecular dynamics-notably x-ray diffraction, NMR and other forms of spectroscopy, and molecular dynamics simulations. Emphasis was placed on those systems and types of problems-such as mechanisms of allosteric control, signal transmission, induced fit to different ligands with its implications for drug design, and the effects of dynamics on structure determination-where a correlation of findings obtained by different methods could shed the most light on the mechanisms involved and stimulate the search for new approaches. The individual articles represent the state of the art in each of the areas cov ered and provide a guide to the original literature in this rapidly developing field. v CONTENTS 1. Determining Structures of ProteinlDN A Complexes by NMR Angela M. Gronenbom and G. Marius Clore 2. Fitting Protein Structures to Experimental Data: Lessons from before Your Mother Was Born . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Jeffrey C. Hoch, Alan S. Stem, and Peter J. Connolly 3. Multisubunit Allosteric Proteins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 William N. Lipscomb 4. Studying Protein Structure and Function by Directed Evolution: Examples with Engineered Antibodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Andreas Pliickthun 5. High Pressure Effects on Protein Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Publisher: Springer Science & Business Media
ISBN: 1461548950
Category : Science
Languages : en
Pages : 227
Book Description
This volume is a collection of articles from the proceedings of the International School of Structural Biology and Magnetic Resonance 3rd Course: Protein Dynamics, Function, and Design. This NATO Advance Study Institute was held in Erice at the Ettore Majorana Centre for Scientific Culture on April 16-28, 1997. The aim of the Institute was to bring together experts applyipg different physical methods to problems of macro molecular dynamics-notably x-ray diffraction, NMR and other forms of spectroscopy, and molecular dynamics simulations. Emphasis was placed on those systems and types of problems-such as mechanisms of allosteric control, signal transmission, induced fit to different ligands with its implications for drug design, and the effects of dynamics on structure determination-where a correlation of findings obtained by different methods could shed the most light on the mechanisms involved and stimulate the search for new approaches. The individual articles represent the state of the art in each of the areas cov ered and provide a guide to the original literature in this rapidly developing field. v CONTENTS 1. Determining Structures of ProteinlDN A Complexes by NMR Angela M. Gronenbom and G. Marius Clore 2. Fitting Protein Structures to Experimental Data: Lessons from before Your Mother Was Born . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Jeffrey C. Hoch, Alan S. Stem, and Peter J. Connolly 3. Multisubunit Allosteric Proteins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 William N. Lipscomb 4. Studying Protein Structure and Function by Directed Evolution: Examples with Engineered Antibodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Andreas Pliickthun 5. High Pressure Effects on Protein Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Biological Macromolecules and Polyelectrolytes in Solution
Author: Henryk Eisenberg
Publisher: Oxford University Press, USA
ISBN:
Category : Language Arts & Disciplines
Languages : en
Pages : 300
Book Description
Publisher: Oxford University Press, USA
ISBN:
Category : Language Arts & Disciplines
Languages : en
Pages : 300
Book Description
Molecular Theory of Solvation
Author: F. Hirata
Publisher: Springer Science & Business Media
ISBN: 1402025904
Category : Science
Languages : en
Pages : 366
Book Description
Molecular Theory of Solvation presents the recent progress in the statistical mechanics of molecular liquids applied to the most intriguing problems in chemistry today, including chemical reactions, conformational stability of biomolecules, ion hydration, and electrode-solution interface. The continuum model of "solvation" has played a dominant role in describing chemical processes in solution during the last century. This book discards and replaces it completely with molecular theory taking proper account of chemical specificity of solvent. The main machinery employed here is the reference-interaction-site-model (RISM) theory, which is combined with other tools in theoretical chemistry and physics: the ab initio and density functional theories in quantum chemistry, the generalized Langevin theory, and the molecular simulation techniques. This book will be of benefit to graduate students and industrial scientists who are struggling to find a better way of accounting and/or predicting "solvation" properties.
Publisher: Springer Science & Business Media
ISBN: 1402025904
Category : Science
Languages : en
Pages : 366
Book Description
Molecular Theory of Solvation presents the recent progress in the statistical mechanics of molecular liquids applied to the most intriguing problems in chemistry today, including chemical reactions, conformational stability of biomolecules, ion hydration, and electrode-solution interface. The continuum model of "solvation" has played a dominant role in describing chemical processes in solution during the last century. This book discards and replaces it completely with molecular theory taking proper account of chemical specificity of solvent. The main machinery employed here is the reference-interaction-site-model (RISM) theory, which is combined with other tools in theoretical chemistry and physics: the ab initio and density functional theories in quantum chemistry, the generalized Langevin theory, and the molecular simulation techniques. This book will be of benefit to graduate students and industrial scientists who are struggling to find a better way of accounting and/or predicting "solvation" properties.
Protein Folding
Author: Alka Dwevedi
Publisher: Springer
ISBN: 3319125923
Category : Science
Languages : en
Pages : 61
Book Description
The book will discuss classes of proteins and their folding, as well as the involvement of bioinformatics in solving the protein folding problem. In vivo and in vitro folding mechanisms are examined, as well as the failures of in vitro folding, a mechanism helpful in understanding disease caused by misfolding. The role of energy landscapes is also discussed and the computational approaches to these landscapes.
Publisher: Springer
ISBN: 3319125923
Category : Science
Languages : en
Pages : 61
Book Description
The book will discuss classes of proteins and their folding, as well as the involvement of bioinformatics in solving the protein folding problem. In vivo and in vitro folding mechanisms are examined, as well as the failures of in vitro folding, a mechanism helpful in understanding disease caused by misfolding. The role of energy landscapes is also discussed and the computational approaches to these landscapes.
Modern Physical Organic Chemistry
Author: Eric V. Anslyn
Publisher: University Science Books
ISBN: 9781891389313
Category : Science
Languages : en
Pages : 1148
Book Description
In additionto covering thoroughly the core areas of physical organic chemistry -structure and mechanism - this book will escortthe practitioner of organic chemistry into a field that has been thoroughlyupdated.
Publisher: University Science Books
ISBN: 9781891389313
Category : Science
Languages : en
Pages : 1148
Book Description
In additionto covering thoroughly the core areas of physical organic chemistry -structure and mechanism - this book will escortthe practitioner of organic chemistry into a field that has been thoroughlyupdated.
Protein Conformation
Author: Derek J. Chadwick
Publisher: John Wiley & Sons
ISBN: 0470514159
Category : Science
Languages : en
Pages : 282
Book Description
How the amino acid sequence of a protein determines its three-dimensional structure is a major problem in biology and chemistry. Leading experts in the fields of NMR spectroscopy, X-ray crystallography, protein engineering and molecular modeling offer provocative insights into current views on the protein folding problem and various aspects for future progress.
Publisher: John Wiley & Sons
ISBN: 0470514159
Category : Science
Languages : en
Pages : 282
Book Description
How the amino acid sequence of a protein determines its three-dimensional structure is a major problem in biology and chemistry. Leading experts in the fields of NMR spectroscopy, X-ray crystallography, protein engineering and molecular modeling offer provocative insights into current views on the protein folding problem and various aspects for future progress.