Soliton Equations and their Algebro-Geometric Solutions: Volume 1, (1+1)-Dimensional Continuous Models

Soliton Equations and their Algebro-Geometric Solutions: Volume 1, (1+1)-Dimensional Continuous Models PDF Author: Fritz Gesztesy
Publisher: Cambridge University Press
ISBN: 9781139439411
Category : Mathematics
Languages : en
Pages : 522

Get Book Here

Book Description
The focus of this book is on algebro-geometric solutions of completely integrable nonlinear partial differential equations in (1+1)-dimensions, also known as soliton equations. Explicitly treated integrable models include the KdV, AKNS, sine-Gordon, and Camassa-Holm hierarchies as well as the classical massive Thirring system. An extensive treatment of the class of algebro-geometric solutions in the stationary as well as time-dependent contexts is provided. The formalism presented includes trace formulas, Dubrovin-type initial value problems, Baker-Akhiezer functions, and theta function representations of all relevant quantities involved. The book uses techniques from the theory of differential equations, spectral analysis, and elements of algebraic geometry (most notably, the theory of compact Riemann surfaces). The presentation is rigorous, detailed, and self-contained, with ample background material provided in various appendices. Detailed notes for each chapter together with an exhaustive bibliography enhance the presentation offered in the main text.

Soliton Equations and their Algebro-Geometric Solutions: Volume 1, (1+1)-Dimensional Continuous Models

Soliton Equations and their Algebro-Geometric Solutions: Volume 1, (1+1)-Dimensional Continuous Models PDF Author: Fritz Gesztesy
Publisher: Cambridge University Press
ISBN: 9781139439411
Category : Mathematics
Languages : en
Pages : 522

Get Book Here

Book Description
The focus of this book is on algebro-geometric solutions of completely integrable nonlinear partial differential equations in (1+1)-dimensions, also known as soliton equations. Explicitly treated integrable models include the KdV, AKNS, sine-Gordon, and Camassa-Holm hierarchies as well as the classical massive Thirring system. An extensive treatment of the class of algebro-geometric solutions in the stationary as well as time-dependent contexts is provided. The formalism presented includes trace formulas, Dubrovin-type initial value problems, Baker-Akhiezer functions, and theta function representations of all relevant quantities involved. The book uses techniques from the theory of differential equations, spectral analysis, and elements of algebraic geometry (most notably, the theory of compact Riemann surfaces). The presentation is rigorous, detailed, and self-contained, with ample background material provided in various appendices. Detailed notes for each chapter together with an exhaustive bibliography enhance the presentation offered in the main text.

Soliton Equations and Their Algebro-Geometric Solutions: Volume 2, (1+1)-Dimensional Discrete Models

Soliton Equations and Their Algebro-Geometric Solutions: Volume 2, (1+1)-Dimensional Discrete Models PDF Author: Fritz Gesztesy
Publisher: Cambridge University Press
ISBN: 1139473778
Category : Mathematics
Languages : en
Pages : 438

Get Book Here

Book Description
As a partner to Volume 1: Dimensional Continuous Models, this monograph provides a self-contained introduction to algebro-geometric solutions of completely integrable, nonlinear, partial differential-difference equations, also known as soliton equations. The systems studied in this volume include the Toda lattice hierarchy, the Kac-van Moerbeke hierarchy, and the Ablowitz-Ladik hierarchy. An extensive treatment of the class of algebro-geometric solutions in the stationary as well as time-dependent contexts is provided. The theory presented includes trace formulas, algebro-geometric initial value problems, Baker-Akhiezer functions, and theta function representations of all relevant quantities involved. The book uses basic techniques from the theory of difference equations and spectral analysis, some elements of algebraic geometry and especially, the theory of compact Riemann surfaces. The presentation is constructive and rigorous, with ample background material provided in various appendices. Detailed notes for each chapter, together with an exhaustive bibliography, enhance understanding of the main results.

Soliton Equations and Their Algebro-geometric Solutions

Soliton Equations and Their Algebro-geometric Solutions PDF Author: Fritz Gesztesy
Publisher:
ISBN: 9780511429842
Category : Differential equations, Nonlinear
Languages : en
Pages : 450

Get Book Here

Book Description


Soliton Equations and Their Algebro-Geometric Solutions: Volume 2, (1+1)-Dimensional Discrete Models

Soliton Equations and Their Algebro-Geometric Solutions: Volume 2, (1+1)-Dimensional Discrete Models PDF Author: Fritz Gesztesy
Publisher: Cambridge University Press
ISBN: 9780521753081
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
As a partner to Volume 1: Dimensional Continuous Models, this book provides a self-contained introduction to solition equations. The systems studied in this volume include the Toda lattice hierarchy, the Kac-van Moerbeke hierarchy, and the Ablowitz-Ladik hierarchy. An extensive treatment of the class of algebro-geometric solutions in the stationary as well as time-dependent contexts is provided. The theory presented includes trace formulas, algebro-geometric initial value problems, Baker-Akhiezer functions, and theta function representations of all relevant quantities involved. The book uses basic techniques from the theory of difference equations and spectral analysis, some elements of algebraic geometry and especially, the theory of compact Riemann surfaces. The presentation is constructive and rigorous, with ample background material provided in various appendices.

Soliton Equations and their Algebro-Geometric Solutions: Volume 1, (1+1)-Dimensional Continuous Models

Soliton Equations and their Algebro-Geometric Solutions: Volume 1, (1+1)-Dimensional Continuous Models PDF Author: Fritz Gesztesy
Publisher: Cambridge University Press
ISBN: 9780521753074
Category : Mathematics
Languages : en
Pages : 518

Get Book Here

Book Description
This book is about algebro-geometric solutions of completely integrable nonlinear partial differential equations in (1+1)-dimensions; also known as soliton equations. Explicitly treated integrable models include the KdV, AKNS, sine-Gordon, and Camassa-Holm hierarchies as well as the classical massive Thirring system. An extensive treatment of the class of algebro-geometric solutions in the stationary and time-dependent contexts is provided. The formalism presented includes trace formulas, Dubrovin-type initial value problems, Baker-Akhiezer functions, and theta function representations of all relevant quantities involved. The book uses techniques from the theory of differential equations, spectral analysis, and elements of algebraic geometry (most notably, the theory of compact Riemann surfaces).

Soliton Equations and Their Algebro-geometric Solutions

Soliton Equations and Their Algebro-geometric Solutions PDF Author: Fritz Gesztesy
Publisher:
ISBN: 9780511427664
Category : Differential equations, Nonlinear
Languages : en
Pages : 438

Get Book Here

Book Description
Detailed treatment of the class of algebro-geometric solutions and their representations in terms of Riemann theta functions.

Soliton Equations and Their Algebro-Geometric Solutions: Volume 2, (1+1)-Dimensional Discrete Models

Soliton Equations and Their Algebro-Geometric Solutions: Volume 2, (1+1)-Dimensional Discrete Models PDF Author: Fritz Gesztesy
Publisher: Cambridge University Press
ISBN: 0521753082
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
As a partner to Volume 1: Dimensional Continuous Models, this monograph provides a self-contained introduction to algebro-geometric solutions of completely integrable, nonlinear, partial differential-difference equations, also known as soliton equations. The systems studied in this volume include the Toda lattice hierarchy, the Kac-van Moerbeke hierarchy, and the Ablowitz-Ladik hierarchy. An extensive treatment of the class of algebro-geometric solutions in the stationary as well as time-dependent contexts is provided. The theory presented includes trace formulas, algebro-geometric initial value problems, Baker-Akhiezer functions, and theta function representations of all relevant quantities involved. The book uses basic techniques from the theory of difference equations and spectral analysis, some elements of algebraic geometry and especially, the theory of compact Riemann surfaces. The presentation is constructive and rigorous, with ample background material provided in various appendices. Detailed notes for each chapter, together with an exhaustive bibliography, enhance understanding of the main results.

The Abel Prize

The Abel Prize PDF Author: Helge Holden
Publisher: Springer Science & Business Media
ISBN: 3642013732
Category : Mathematics
Languages : en
Pages : 325

Get Book Here

Book Description
The book presents the winners of the first five Abel Prizes in mathematics: 2003 Jean-Pierre Serre; 2004 Sir Michael Atiyah and Isadore Singer; 2005 Peter D. Lax; 2006 Lennart Carleson; and 2007 S.R. Srinivasa Varadhan. Each laureate provides an autobiography or an interview, a curriculum vitae, and a complete bibliography. This is complemented by a scholarly description of their work written by leading experts in the field and by a brief history of the Abel Prize. Interviews with the laureates can be found at http://extras.springer.com .

Glimpses of Soliton Theory

Glimpses of Soliton Theory PDF Author: Alex Kasman
Publisher: American Mathematical Society
ISBN: 1470472627
Category : Mathematics
Languages : en
Pages : 366

Get Book Here

Book Description
This book challenges and intrigues from beginning to end. It would be a treat to use for a capstone course or senior seminar. —William J. Satzer, MAA Reviews on Glimpses of Soliton Theory (First Edition) Solitons are nonlinear waves which behave like interacting particles. When first proposed in the 19th century, leading mathematical physicists denied that such a thing could exist. Now they are regularly observed in nature, shedding light on phenomena like rogue waves and DNA transcription. Solitons of light are even used by engineers for data transmission and optical switches. Furthermore, unlike most nonlinear partial differential equations, soliton equations have the remarkable property of being exactly solvable. Explicit solutions to those equations provide a rare window into what is possible in the realm of nonlinearity. Glimpses of Soliton Theory reveals the hidden connections discovered over the last half-century that explain the existence of these mysterious mathematical objects. It aims to convince the reader that, like the mirrors and hidden pockets used by magicians, the underlying algebro-geometric structure of soliton equations provides an elegant explanation of something seemingly miraculous. Assuming only multivariable calculus and linear algebra, the book introduces the reader to the KdV Equation and its multisoliton solutions, elliptic curves and Weierstrass $wp$-functions, the algebra of differential operators, Lax Pairs and their use in discovering other soliton equations, wedge products and decomposability, the KP Hierarchy, and Sato's theory relating the Bilinear KP Equation to the geometry of Grassmannians. Notable features of the book include: careful selection of topics and detailed explanations to make the subject accessible to undergraduates, numerous worked examples and thought-provoking exercises, footnotes and lists of suggested readings to guide the interested reader to more information, and use of Mathematica® to facilitate computation and animate solutions. The second edition refines the exposition in every chapter, adds more homework exercises and projects, updates references, and includes new examples involving non-commutative integrable systems. Moreover, the chapter on KdV multisolitons has been greatly expanded with new theorems providing a thorough analysis of their behavior and decomposition.

Nonlinear Systems and Their Remarkable Mathematical Structures

Nonlinear Systems and Their Remarkable Mathematical Structures PDF Author: Norbert Euler
Publisher: CRC Press
ISBN: 1000423263
Category : Mathematics
Languages : en
Pages : 510

Get Book Here

Book Description
The third volume in this sequence of books consists of a collection of contributions that aims to describe the recent progress in nonlinear differential equations and nonlinear dynamical systems (both continuous and discrete). Nonlinear Systems and Their Remarkable Mathematical Structures: Volume 3, Contributions from China just like the first two volumes, consists of contributions by world-leading experts in the subject of nonlinear systems, but in this instance only featuring contributions by leading Chinese scientists who also work in China (in some cases in collaboration with western scientists). Features Clearly illustrate the mathematical theories of nonlinear systems and its progress to both the non-expert and active researchers in this area . Suitable for graduate students in Mathematics, Applied Mathematics and some of the Engineering Sciences. Written in a careful pedagogical manner by those experts who have been involved in the research themselves, and each contribution is reasonably self-contained.