Author: Gavin Walker
Publisher: Woodhead Publishing
ISBN:
Category : Science
Languages : en
Pages : 616
Book Description
Hydrogen fuel cells are emerging as a major alternative energy source in transportation and other applications. Central to the development of the hydrogen economy is safe, efficient and viable storage of hydrogen. Solid-state hydrogen storage: Materials and chemistry reviews the latest developments in solid-state hydrogen storage. Part one discusses hydrogen storage technologies, hydrogen futures, hydrogen containment materials and solid-state hydrogen storage system design. Part two reviews the analysis of hydrogen interactions including structural characterisation of hydride materials, neutron scattering techniques, reliably measuring hydrogen uptake in storage materials and modelling of carbon-based materials for hydrogen storage. Part three analyses physically-bound hydrogen storage with chapters on zeolites, carbon nanostructures and metal-organic framework materials. Part four examines chemically-bound hydrogen storage including intermetallics, magnesium hydride, alanates, borohydrides, imides and amides, multicomponent hydrogen storage systems, organic liquid carriers, indirect hydrogen storage in metal ammines and technological challenges in hydrogen storage. With its distinguished editor and international team of contributors, Solid-state hydrogen storage: Materials and chemistry is a standard reference for researchers and professionals in the field of renewable energy, hydrogen fuel cells and hydrogen storage. Assesses hydrogen fuel cells as a major alternative energy source Discusses hydrogen storage technologies and solid-state hydrogen storage system design Explores the analysis of hydrogen interactions including reliably measuring hydrogen uptake in storage materials
Solid-State Hydrogen Storage
Author: Gavin Walker
Publisher: Woodhead Publishing
ISBN:
Category : Science
Languages : en
Pages : 616
Book Description
Hydrogen fuel cells are emerging as a major alternative energy source in transportation and other applications. Central to the development of the hydrogen economy is safe, efficient and viable storage of hydrogen. Solid-state hydrogen storage: Materials and chemistry reviews the latest developments in solid-state hydrogen storage. Part one discusses hydrogen storage technologies, hydrogen futures, hydrogen containment materials and solid-state hydrogen storage system design. Part two reviews the analysis of hydrogen interactions including structural characterisation of hydride materials, neutron scattering techniques, reliably measuring hydrogen uptake in storage materials and modelling of carbon-based materials for hydrogen storage. Part three analyses physically-bound hydrogen storage with chapters on zeolites, carbon nanostructures and metal-organic framework materials. Part four examines chemically-bound hydrogen storage including intermetallics, magnesium hydride, alanates, borohydrides, imides and amides, multicomponent hydrogen storage systems, organic liquid carriers, indirect hydrogen storage in metal ammines and technological challenges in hydrogen storage. With its distinguished editor and international team of contributors, Solid-state hydrogen storage: Materials and chemistry is a standard reference for researchers and professionals in the field of renewable energy, hydrogen fuel cells and hydrogen storage. Assesses hydrogen fuel cells as a major alternative energy source Discusses hydrogen storage technologies and solid-state hydrogen storage system design Explores the analysis of hydrogen interactions including reliably measuring hydrogen uptake in storage materials
Publisher: Woodhead Publishing
ISBN:
Category : Science
Languages : en
Pages : 616
Book Description
Hydrogen fuel cells are emerging as a major alternative energy source in transportation and other applications. Central to the development of the hydrogen economy is safe, efficient and viable storage of hydrogen. Solid-state hydrogen storage: Materials and chemistry reviews the latest developments in solid-state hydrogen storage. Part one discusses hydrogen storage technologies, hydrogen futures, hydrogen containment materials and solid-state hydrogen storage system design. Part two reviews the analysis of hydrogen interactions including structural characterisation of hydride materials, neutron scattering techniques, reliably measuring hydrogen uptake in storage materials and modelling of carbon-based materials for hydrogen storage. Part three analyses physically-bound hydrogen storage with chapters on zeolites, carbon nanostructures and metal-organic framework materials. Part four examines chemically-bound hydrogen storage including intermetallics, magnesium hydride, alanates, borohydrides, imides and amides, multicomponent hydrogen storage systems, organic liquid carriers, indirect hydrogen storage in metal ammines and technological challenges in hydrogen storage. With its distinguished editor and international team of contributors, Solid-state hydrogen storage: Materials and chemistry is a standard reference for researchers and professionals in the field of renewable energy, hydrogen fuel cells and hydrogen storage. Assesses hydrogen fuel cells as a major alternative energy source Discusses hydrogen storage technologies and solid-state hydrogen storage system design Explores the analysis of hydrogen interactions including reliably measuring hydrogen uptake in storage materials
Nanomaterials for Solid State Hydrogen Storage
Author: Robert A. Varin
Publisher: Springer Science & Business Media
ISBN: 0387777121
Category : Technology & Engineering
Languages : en
Pages : 346
Book Description
Over the past decade, important advances have been made in the development of nanostructured materials for solid state hydrogen storage used to supply hydrogen to fuel cells in a clean, inexpensive, safe and efficient manner. Nanomaterials for Solid State Hydrogen Storage focuses on hydrogen storage materials having high volumetric and gravimetric hydrogen capacities, and thus having the highest potential of being applied in the automotive sector. Written by leading experts in the field, Nanomaterials for Solid State Hydrogen Storage provides a thorough history of hydrides and nanomaterials, followed by a discussion of existing fabrication methods. The authors’ own research results in the behavior of various hydrogen storage materials are also presented. Covering fundamentals, extensive research results and recent advances in nanomaterials for solid state hydrogen storage, this book serves as a comprehensive reference.
Publisher: Springer Science & Business Media
ISBN: 0387777121
Category : Technology & Engineering
Languages : en
Pages : 346
Book Description
Over the past decade, important advances have been made in the development of nanostructured materials for solid state hydrogen storage used to supply hydrogen to fuel cells in a clean, inexpensive, safe and efficient manner. Nanomaterials for Solid State Hydrogen Storage focuses on hydrogen storage materials having high volumetric and gravimetric hydrogen capacities, and thus having the highest potential of being applied in the automotive sector. Written by leading experts in the field, Nanomaterials for Solid State Hydrogen Storage provides a thorough history of hydrides and nanomaterials, followed by a discussion of existing fabrication methods. The authors’ own research results in the behavior of various hydrogen storage materials are also presented. Covering fundamentals, extensive research results and recent advances in nanomaterials for solid state hydrogen storage, this book serves as a comprehensive reference.
Energy, Society and the Environment
Author: Ali Salehabadi
Publisher: Springer Nature
ISBN: 9811549060
Category : Technology & Engineering
Languages : en
Pages : 104
Book Description
This book provides a comprehensive and contemporary overview of advances in energy and energy storage technologies. Although the coverage is varied and diverse, the book also addresses unifying patterns and trends in order to enrich readers’ understanding of energy and energy storage systems, particularly hydrogen energy storage, including e.g. their morphology, porosity and material structure. Readers will also gain insights into the hydrogen storage performance landscape, based on data released by the US Department of Energy (DOE), providing a basis for understanding real-world applications. The book also discusses the superior hydrogen storage performance of solid-state materials and explores the physical and chemical properties that can potentially affect their performance.
Publisher: Springer Nature
ISBN: 9811549060
Category : Technology & Engineering
Languages : en
Pages : 104
Book Description
This book provides a comprehensive and contemporary overview of advances in energy and energy storage technologies. Although the coverage is varied and diverse, the book also addresses unifying patterns and trends in order to enrich readers’ understanding of energy and energy storage systems, particularly hydrogen energy storage, including e.g. their morphology, porosity and material structure. Readers will also gain insights into the hydrogen storage performance landscape, based on data released by the US Department of Energy (DOE), providing a basis for understanding real-world applications. The book also discusses the superior hydrogen storage performance of solid-state materials and explores the physical and chemical properties that can potentially affect their performance.
Hydrogen Storage Materials
Author: R. G. Barnes
Publisher:
ISBN:
Category : Energy storage
Languages : en
Pages : 336
Book Description
Ames Laboratory, Iowa, USA
Publisher:
ISBN:
Category : Energy storage
Languages : en
Pages : 336
Book Description
Ames Laboratory, Iowa, USA
Hydrogen Storage Technologies
Author: Mehmet Sankir
Publisher: John Wiley & Sons
ISBN: 111946062X
Category : Science
Languages : en
Pages : 296
Book Description
Hydrogen storage is considered a key technology for stationary and portable power generation especially for transportation. This volume covers the novel technologies to efficiently store and distribute hydrogen and discusses the underlying basics as well as the advanced details in hydrogen storage technologies. The book has two major parts: Chemical and electrochemical hydrogen storage and Carbon-based materials for hydrogen storage. The following subjects are detailed in Part I: Multi stage compression system based on metal hydrides Metal-N-H systems and their physico-chemical properties Mg-based nano materials with enhanced sorption kinetics Gaseous and electrochemical hydrogen storage in the Ti-Z-Ni Electrochemical methods for hydrogenation/dehydrogenation of metal hydrides In Part II the following subjects are addressed: Activated carbon for hydrogen storage obtained from agro-industrial waste Hydrogen storage using carbonaceous materials Hydrogen storage performance of composite material consisting of single walled carbon nanotubes and metal oxide nanoparticles Hydrogen storage characteristics of graphene addition of hydrogen storage materials Discussion of the crucial features of hydrogen adsorption of nanotextured carbon-based materials
Publisher: John Wiley & Sons
ISBN: 111946062X
Category : Science
Languages : en
Pages : 296
Book Description
Hydrogen storage is considered a key technology for stationary and portable power generation especially for transportation. This volume covers the novel technologies to efficiently store and distribute hydrogen and discusses the underlying basics as well as the advanced details in hydrogen storage technologies. The book has two major parts: Chemical and electrochemical hydrogen storage and Carbon-based materials for hydrogen storage. The following subjects are detailed in Part I: Multi stage compression system based on metal hydrides Metal-N-H systems and their physico-chemical properties Mg-based nano materials with enhanced sorption kinetics Gaseous and electrochemical hydrogen storage in the Ti-Z-Ni Electrochemical methods for hydrogenation/dehydrogenation of metal hydrides In Part II the following subjects are addressed: Activated carbon for hydrogen storage obtained from agro-industrial waste Hydrogen storage using carbonaceous materials Hydrogen storage performance of composite material consisting of single walled carbon nanotubes and metal oxide nanoparticles Hydrogen storage characteristics of graphene addition of hydrogen storage materials Discussion of the crucial features of hydrogen adsorption of nanotextured carbon-based materials
Hydrogen Storage Technology
Author: Lennie Klebanoff
Publisher: Taylor & Francis
ISBN: 143984108X
Category : Science
Languages : en
Pages : 480
Book Description
Zero-carbon, hydrogen-based power technology offers the most promising long-term solution for a secure and sustainable energy infrastructure. With contributions from the world's leading technical experts in the field, Hydrogen Storage Technology: Materials and Applications presents a broad yet unified account of the various materials science, physi
Publisher: Taylor & Francis
ISBN: 143984108X
Category : Science
Languages : en
Pages : 480
Book Description
Zero-carbon, hydrogen-based power technology offers the most promising long-term solution for a secure and sustainable energy infrastructure. With contributions from the world's leading technical experts in the field, Hydrogen Storage Technology: Materials and Applications presents a broad yet unified account of the various materials science, physi
Handbook of Hydrogen Storage
Author: Michael Hirscher
Publisher: John Wiley & Sons
ISBN: 3527322736
Category : Science
Languages : en
Pages : 388
Book Description
Owing to the limited resources of fossil fuels, hydrogen is proposed as an alternative and environment-friendly energy carrier. However, its potential is limited by storage problems, especially for mobile applications. Current technologies, as compressed gas or liquefied hydrogen, comprise severe disadvantages and the storage of hydrogen in lightweight solids could be the solution to this problem. Since the optimal storage mechanism and optimal material have yet to be identified, this first handbook on the topic provides an excellent overview of the most probable candidates, highlighting both their advantages as well as drawbacks. From the contents: ¿ Physisorption ¿ Clathrates ¿ Metal hydrides ¿ Complex hydrides ¿ Amides, imides, and mixtures ¿ Tailoring Reaction Enthalpies ¿ Borazan ¿ Aluminum hydride ¿ Nanoparticles A one-stop reference on all questions concerning hydrogen storage for physical and solid state chemists, materials scientists, chemical engineers, and physicists.
Publisher: John Wiley & Sons
ISBN: 3527322736
Category : Science
Languages : en
Pages : 388
Book Description
Owing to the limited resources of fossil fuels, hydrogen is proposed as an alternative and environment-friendly energy carrier. However, its potential is limited by storage problems, especially for mobile applications. Current technologies, as compressed gas or liquefied hydrogen, comprise severe disadvantages and the storage of hydrogen in lightweight solids could be the solution to this problem. Since the optimal storage mechanism and optimal material have yet to be identified, this first handbook on the topic provides an excellent overview of the most probable candidates, highlighting both their advantages as well as drawbacks. From the contents: ¿ Physisorption ¿ Clathrates ¿ Metal hydrides ¿ Complex hydrides ¿ Amides, imides, and mixtures ¿ Tailoring Reaction Enthalpies ¿ Borazan ¿ Aluminum hydride ¿ Nanoparticles A one-stop reference on all questions concerning hydrogen storage for physical and solid state chemists, materials scientists, chemical engineers, and physicists.
Hydrogen Storage Materials
Author: Darren P. Broom
Publisher: Springer Science & Business Media
ISBN: 0857292218
Category : Technology & Engineering
Languages : en
Pages : 263
Book Description
The problem of storing hydrogen safely and effectively is one of the major technological barriers currently preventing the widespread adoption of hydrogen as an energy carrier and the subsequent transition to a so-called hydrogen economy. Practical issues with the storage of hydrogen in both gas and liquid form appear to make reversible solid state hydrogen storage the most promising potential solution. Hydrogen Storage Materials addresses the characterisation of the hydrogen storage properties of the materials that are currently being considered for this purpose. The background to the topic is introduced, along with the various types of materials that are currently under investigation, including nanostructured interstitial and complex hydrides, and porous materials, such as metal-organic frameworks and microporous organic polymers. The main features of Hydrogen Storage Materials include: an overview of the different types of hydrogen storage materials and the properties that are of interest for their practical use; descriptions of the gas sorption measurement methods used to determine these properties, and the complementary techniques that can be used to help corroborate hydrogen uptake data; and extensive coverage of the practical considerations for accurate hydrogen sorption measurement that drive both instrument design and the development of experimental methodology. Hydrogen Storage Materials provides an up-to-date overview of the topic for experienced researchers, while including enough introductory material to serve as a useful, practical introduction for newcomers to the field.
Publisher: Springer Science & Business Media
ISBN: 0857292218
Category : Technology & Engineering
Languages : en
Pages : 263
Book Description
The problem of storing hydrogen safely and effectively is one of the major technological barriers currently preventing the widespread adoption of hydrogen as an energy carrier and the subsequent transition to a so-called hydrogen economy. Practical issues with the storage of hydrogen in both gas and liquid form appear to make reversible solid state hydrogen storage the most promising potential solution. Hydrogen Storage Materials addresses the characterisation of the hydrogen storage properties of the materials that are currently being considered for this purpose. The background to the topic is introduced, along with the various types of materials that are currently under investigation, including nanostructured interstitial and complex hydrides, and porous materials, such as metal-organic frameworks and microporous organic polymers. The main features of Hydrogen Storage Materials include: an overview of the different types of hydrogen storage materials and the properties that are of interest for their practical use; descriptions of the gas sorption measurement methods used to determine these properties, and the complementary techniques that can be used to help corroborate hydrogen uptake data; and extensive coverage of the practical considerations for accurate hydrogen sorption measurement that drive both instrument design and the development of experimental methodology. Hydrogen Storage Materials provides an up-to-date overview of the topic for experienced researchers, while including enough introductory material to serve as a useful, practical introduction for newcomers to the field.
Hydrogen Storage Materials
Author: Emil Burzo
Publisher:
ISBN: 9783662542613
Category : Electrical engineering
Languages : en
Pages : 526
Book Description
Publisher:
ISBN: 9783662542613
Category : Electrical engineering
Languages : en
Pages : 526
Book Description
Nanomaterials for Hydrogen Storage Applications
Author: Fatih Şen
Publisher: Elsevier
ISBN: 0128194774
Category : Technology & Engineering
Languages : en
Pages : 286
Book Description
Nanomaterials for Hydrogen Storage Applications introduces nanomaterials and nanocomposites manufacturing and design for hydrogen storage applications. The book covers the manufacturing, design, characterization techniques and hydrogen storage applications of a range of nanomaterials. It outlines fundamental characterization techniques for nanocomposites to establish their suitability for hydrogen storage applications. Offering a sound knowledge of hydrogen storage application of nanocomposites, this book is an important resource for both materials scientists and engineers who are seeking to understand how nanomaterials can be used to create more efficient energy storage solutions. - Assesses the characterization, design, manufacture and application of different types of nanomaterials for hydrogen storage - Outlines the major challenges of using nanomaterials in hydrogen storage - Discusses how the use of nanotechnology is helping engineers create more effective hydrogen storage systems
Publisher: Elsevier
ISBN: 0128194774
Category : Technology & Engineering
Languages : en
Pages : 286
Book Description
Nanomaterials for Hydrogen Storage Applications introduces nanomaterials and nanocomposites manufacturing and design for hydrogen storage applications. The book covers the manufacturing, design, characterization techniques and hydrogen storage applications of a range of nanomaterials. It outlines fundamental characterization techniques for nanocomposites to establish their suitability for hydrogen storage applications. Offering a sound knowledge of hydrogen storage application of nanocomposites, this book is an important resource for both materials scientists and engineers who are seeking to understand how nanomaterials can be used to create more efficient energy storage solutions. - Assesses the characterization, design, manufacture and application of different types of nanomaterials for hydrogen storage - Outlines the major challenges of using nanomaterials in hydrogen storage - Discusses how the use of nanotechnology is helping engineers create more effective hydrogen storage systems