Solid State Electrode-Electrolyte Interface Engineering and Material Processing For All Solid State Batteries

Solid State Electrode-Electrolyte Interface Engineering and Material Processing For All Solid State Batteries PDF Author: Han Quoc Nguyen
Publisher:
ISBN:
Category :
Languages : en
Pages : 208

Get Book Here

Book Description
Current state of the art commercial lithium ion batteries (LIB) have been successful power sources for portable electronics. The success of this battery has led to its penetration into electric vehicle and grid-scale storage markets. However, large quantities of LIB batteries pose a threat to public safety, as they are capable of explosive results due to the flammability of the electrolyte. All-solid-state battery (ASSB) technology is gaining attention because it has properties that can address all the shortcomings of LIB, such as: improved safe battery operations using non-volatile and non-flammable components, enabling the Li metal anode, preventing dendrite propagation, high voltage operation, suitable mechanical properties, and high transference number. Among the known solid electrolytes, sulfides have shown promise due to their processibility at lower temperatures, high ionic conductivity, and ductility compared to their oxide analogs. Herein, we investigate new SSE material and evaluate their structure and properties. The crystal structure of the SSE is solved through x-ray diffraction. The performance of the SSE is evaluated through electrochemical means such as: electrochemical impedance spectroscopy, Arrhenius behavior, electrochemical stability window, and galvanostatic charge and discharge performance in a battery. SSE for ASSB is demonstrated to have comparable room temperature ionic conductivity as their LE counterparts. Their performance can be further improved through post-processing reducing grain boundary impedance and defect engineering. The interface of the SSE and electrodes are a formidable technical hurdle to understand and overcome due to their buried nature in the ASSB configuration. The most complex of interface is the cathode/SSE interface where parasitic reaction products are formed by chemical and electrochemical means occurs. Through proper interface engineering, the stability of the interface can be improved. A lithium metal anode is demonstrated to reversibly cycle with high voltage cathodes and Li-S chemistries shorting and showing a pathway to safe and high energy density ASSB.

Solid State Electrode-Electrolyte Interface Engineering and Material Processing For All Solid State Batteries

Solid State Electrode-Electrolyte Interface Engineering and Material Processing For All Solid State Batteries PDF Author: Han Quoc Nguyen
Publisher:
ISBN:
Category :
Languages : en
Pages : 208

Get Book Here

Book Description
Current state of the art commercial lithium ion batteries (LIB) have been successful power sources for portable electronics. The success of this battery has led to its penetration into electric vehicle and grid-scale storage markets. However, large quantities of LIB batteries pose a threat to public safety, as they are capable of explosive results due to the flammability of the electrolyte. All-solid-state battery (ASSB) technology is gaining attention because it has properties that can address all the shortcomings of LIB, such as: improved safe battery operations using non-volatile and non-flammable components, enabling the Li metal anode, preventing dendrite propagation, high voltage operation, suitable mechanical properties, and high transference number. Among the known solid electrolytes, sulfides have shown promise due to their processibility at lower temperatures, high ionic conductivity, and ductility compared to their oxide analogs. Herein, we investigate new SSE material and evaluate their structure and properties. The crystal structure of the SSE is solved through x-ray diffraction. The performance of the SSE is evaluated through electrochemical means such as: electrochemical impedance spectroscopy, Arrhenius behavior, electrochemical stability window, and galvanostatic charge and discharge performance in a battery. SSE for ASSB is demonstrated to have comparable room temperature ionic conductivity as their LE counterparts. Their performance can be further improved through post-processing reducing grain boundary impedance and defect engineering. The interface of the SSE and electrodes are a formidable technical hurdle to understand and overcome due to their buried nature in the ASSB configuration. The most complex of interface is the cathode/SSE interface where parasitic reaction products are formed by chemical and electrochemical means occurs. Through proper interface engineering, the stability of the interface can be improved. A lithium metal anode is demonstrated to reversibly cycle with high voltage cathodes and Li-S chemistries shorting and showing a pathway to safe and high energy density ASSB.

Solid State Batteries: Materials Design and Optimization

Solid State Batteries: Materials Design and Optimization PDF Author: Christian Julien
Publisher: Springer Science & Business Media
ISBN: 146152704X
Category : Science
Languages : en
Pages : 577

Get Book Here

Book Description
The field of solid state ionics is multidisciplinary in nature. Chemists, physicists, electrochimists, and engineers all are involved in the research and development of materials, techniques, and theoretical approaches. This science is one of the great triumphs of the second part of the 20th century. For nearly a century, development of materials for solid-state ionic technology has been restricted. During the last two decades there have been remarkable advances: more materials were discovered, modem technologies were used for characterization and optimization of ionic conduction in solids, trial and error approaches were deserted for defined predictions. During the same period fundamental theories for ion conduction in solids appeared. The large explosion of solid-state ionic material science may be considered to be due to two other influences. The first aspect is related to economy and connected with energy production, storage, and utilization. There are basic problems in industrialized countries from the economical, environmental, political, and technological points of view. The possibility of storing a large amount of utilizable energy in a comparatively small volume would make a number of non-conventional intermittent energy sources of practical convenience and cost. The second aspect is related to huge increase in international relationships between researchers and exchanges of results make considerable progress between scientists; one find many institutes joined in common search programs such as the material science networks organized by EEC in the European countries.

Diffusion in Solids

Diffusion in Solids PDF Author: Helmut Mehrer
Publisher: Springer Science & Business Media
ISBN: 354071488X
Category : Technology & Engineering
Languages : en
Pages : 645

Get Book Here

Book Description
This book describes the central aspects of diffusion in solids, and goes on to provide easy access to important information about diffusion in metals, alloys, semiconductors, ion-conducting materials, glasses and nanomaterials. Coverage includes diffusion-controlled phenomena including ionic conduction, grain-boundary and dislocation pipe diffusion. This book will benefit graduate students in such disciplines as solid-state physics, physical metallurgy, materials science, and geophysics, as well as scientists in academic and industrial research laboratories.

Solid State Batteries

Solid State Batteries PDF Author: Nithyadharseni Palaniyandy
Publisher: Springer Nature
ISBN: 3031124707
Category : Technology & Engineering
Languages : en
Pages : 298

Get Book Here

Book Description
This book offers a comprehensive analysis of novel design strategies in higher energy solid-state lithium batteries. It describes synthesis and experimental techniques to characterize the physical, chemical and electrochemical properties of the electrode and electrolytes. The book reports on electrochemical measurements of conductivity and related parameters in solid electrolytes and its interfaces. It also presents various technologies that have been used for the fabrication of all-solid-state lithium-ion batteries such as thin-film, 3D printing (additive manufacturing) and atomic layer deposition. A large part of the text focus on the description on the complete functioning and challenges with the electrochemistry of the electrodes and solid electrolyte interfaces. The book also supplies valuable insight into potential growth opportunities in this exciting market and cost-effective design tactics in solid-state assemblies.

Materials for Lithium-Ion Batteries

Materials for Lithium-Ion Batteries PDF Author: Christian Julien
Publisher: Springer Science & Business Media
ISBN: 9780792366508
Category : Technology & Engineering
Languages : en
Pages : 658

Get Book Here

Book Description
A lithium-ion battery comprises essentially three components: two intercalation compounds as positive and negative electrodes, separated by an ionic-electronic electrolyte. Each component is discussed in sufficient detail to give the practising engineer an understanding of the subject, providing guidance on the selection of suitable materials in actual applications. Each topic covered is written by an expert, reflecting many years of experience in research and applications. Each topic is provided with an extensive list of references, allowing easy access to further information. Readership: Research students and engineers seeking an expert review. Graduate courses in electrical drives can also be designed around the book by selecting sections for discussion. The coverage and treatment make the book indispensable for the lithium battery community.

Solid Electrolytes for Advanced Applications

Solid Electrolytes for Advanced Applications PDF Author: Ramaswamy Murugan
Publisher: Springer Nature
ISBN: 3030315819
Category : Science
Languages : en
Pages : 373

Get Book Here

Book Description
This book highlights the state of the art in solid electrolytes, with particular emphasis on lithium garnets, electrolyte-electrode interfaces and all-solid-state batteries based on lithium garnets. Written by an international group of renowned experts, the book addresses how garnet-type solid electrolytes are contributing to the development of safe high energy density Li batteries. Unlike the flammable organic liquid electrolyte used in existing rechargeable Li batteries, garnet-type solid electrolytes are intrinsically chemically stable in contact with metallic lithium and potential positive electrodes, while offering reasonable Li conductivity. The book's respective chapters cover a broad spectrum of topics related to solid electrolytes, including interfacial engineering to resolve the electrolyte-electrode interfaces, the latest developments in the processing of thin and ultrathin lithium garnet membranes, and fabrication strategies for the high-performance solid-state batteries.This highly informative and intriguing book will appeal to postgraduate students and researchers at academic and industrial laboratories with an interest in the advancement of high energy-density lithium metal batteries

Solid State Ionics for Batteries

Solid State Ionics for Batteries PDF Author: M. Tatsumisago
Publisher: Springer Science & Business Media
ISBN: 4431277145
Category : Science
Languages : en
Pages : 287

Get Book Here

Book Description
In this book, recent progress in batteries is firstly reviewed by researchers in three leading Japanese battery companies, SONY, Matsushita and Sanyo, and then the future problems in battery development are stated. Then, recent development of solid state ionics for batteries, including lithium ion battery, metal-hydride battery, and fuel cells, are reviewed. A battery comprises essentially three components: positive electrode, negative electrode, and electrolyte. Each component is discussed for the construction of all-solid-state Batteries. Theoretical understanding of properties of battery materials by using molecular orbital calculations is also introduced.

Handbook Of Solid State Batteries (Second Edition)

Handbook Of Solid State Batteries (Second Edition) PDF Author: Nancy J Dudney
Publisher: World Scientific
ISBN: 9814651915
Category : Science
Languages : en
Pages : 835

Get Book Here

Book Description
Solid-state batteries hold the promise of providing energy storage with high volumetric and gravimetric energy densities at high power densities, yet with far less safety issues relative to those associated with conventional liquid or gel-based lithium-ion batteries. Solid-state batteries are envisioned to be useful for a broad spectrum of energy storage applications, including powering automobiles and portable electronic devices, as well as stationary storage and load-leveling of renewably generated energy. This comprehensive handbook covers a wide range of topics related to solid-state batteries, including advanced enabling characterization techniques, fundamentals of solid-state systems, novel solid electrolyte systems, interfaces, cell-level studies, and three-dimensional architectures. It is directed at physicists, chemists, materials scientists, electrochemists, electrical engineers, battery technologists, and evaluators of present and future generations of power sources. This handbook serves as a reference text providing state-of-the-art reviews on solid-state battery technologies, as well as providing insights into likely future developments in the field. It is extensively annotated with comprehensive references useful to the student and practitioners in the field.

Polymer-based Solid State Batteries

Polymer-based Solid State Batteries PDF Author: Daniel Brandell
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 1501514903
Category : Technology & Engineering
Languages : en
Pages : 236

Get Book Here

Book Description
Recent years has seen a tremendous growth in interest for solid state batteries based on polymer electrolytes, with advantages of higher safety, energy density, and ease of processing. The book explains which polymer properties guide the performance of the solid-state device, and how these properties are best determined. It is an excellent guide for students, newcomers and experts in the area of solid polymer electrolytes.

Hard X-ray Photoelectron Spectroscopy (HAXPES)

Hard X-ray Photoelectron Spectroscopy (HAXPES) PDF Author: Joseph Woicik
Publisher: Springer
ISBN: 3319240439
Category : Science
Languages : en
Pages : 576

Get Book Here

Book Description
This book provides the first complete and up-to-date summary of the state of the art in HAXPES and motivates readers to harness its powerful capabilities in their own research. The chapters are written by experts. They include historical work, modern instrumentation, theory and applications. This book spans from physics to chemistry and materials science and engineering. In consideration of the rapid development of the technique, several chapters include highlights illustrating future opportunities as well.