Author: Stephen J. Fonash
Publisher: Elsevier
ISBN: 0323154638
Category : Technology & Engineering
Languages : en
Pages : 353
Book Description
Solar Cell Device Physics offers a balanced, in-depth qualitative and quantitative treatment of the physical principles and operating characteristics of solar cell devices. Topics covered include photovoltaic energy conversion and solar cell materials and structures, along with homojunction solar cells. Semiconductor-semiconductor heterojunction cells and surface-barrier solar cells are also discussed. This book consists of six chapters and begins by introducing the reader to the basic physical principles and materials properties that are the foundations of photovoltaic energy conversion, with emphasis on various photovoltaic devices capable of efficiently converting solar energy into usable electrical energy. The electronic and optical properties of crystalline, polycrystalline, and amorphous materials with both organic and inorganic materials are considered, together with the manner in which these properties change from one material class to another and the implications of such changes for photovoltaics. Generation, recombination, and bulk transport are also discussed. The two mechanisms of photocarrier collection in solar cells, drift and diffusion, are then compared. The remaining chapters focus on specific solar cell device classes defined in terms of the interface structure employed: homojunctions, semiconductor-semiconductor heterojunctions, and surface-barrier devices. This monograph is appropriate for use as a textbook for graduate students in engineering and the sciences and for seniors in electrical engineering and applied physics, as well as a reference book for those actively involved in solar cell research and development.
Solar Cell Device Physics
Author: Stephen J. Fonash
Publisher: Elsevier
ISBN: 0323154638
Category : Technology & Engineering
Languages : en
Pages : 353
Book Description
Solar Cell Device Physics offers a balanced, in-depth qualitative and quantitative treatment of the physical principles and operating characteristics of solar cell devices. Topics covered include photovoltaic energy conversion and solar cell materials and structures, along with homojunction solar cells. Semiconductor-semiconductor heterojunction cells and surface-barrier solar cells are also discussed. This book consists of six chapters and begins by introducing the reader to the basic physical principles and materials properties that are the foundations of photovoltaic energy conversion, with emphasis on various photovoltaic devices capable of efficiently converting solar energy into usable electrical energy. The electronic and optical properties of crystalline, polycrystalline, and amorphous materials with both organic and inorganic materials are considered, together with the manner in which these properties change from one material class to another and the implications of such changes for photovoltaics. Generation, recombination, and bulk transport are also discussed. The two mechanisms of photocarrier collection in solar cells, drift and diffusion, are then compared. The remaining chapters focus on specific solar cell device classes defined in terms of the interface structure employed: homojunctions, semiconductor-semiconductor heterojunctions, and surface-barrier devices. This monograph is appropriate for use as a textbook for graduate students in engineering and the sciences and for seniors in electrical engineering and applied physics, as well as a reference book for those actively involved in solar cell research and development.
Publisher: Elsevier
ISBN: 0323154638
Category : Technology & Engineering
Languages : en
Pages : 353
Book Description
Solar Cell Device Physics offers a balanced, in-depth qualitative and quantitative treatment of the physical principles and operating characteristics of solar cell devices. Topics covered include photovoltaic energy conversion and solar cell materials and structures, along with homojunction solar cells. Semiconductor-semiconductor heterojunction cells and surface-barrier solar cells are also discussed. This book consists of six chapters and begins by introducing the reader to the basic physical principles and materials properties that are the foundations of photovoltaic energy conversion, with emphasis on various photovoltaic devices capable of efficiently converting solar energy into usable electrical energy. The electronic and optical properties of crystalline, polycrystalline, and amorphous materials with both organic and inorganic materials are considered, together with the manner in which these properties change from one material class to another and the implications of such changes for photovoltaics. Generation, recombination, and bulk transport are also discussed. The two mechanisms of photocarrier collection in solar cells, drift and diffusion, are then compared. The remaining chapters focus on specific solar cell device classes defined in terms of the interface structure employed: homojunctions, semiconductor-semiconductor heterojunctions, and surface-barrier devices. This monograph is appropriate for use as a textbook for graduate students in engineering and the sciences and for seniors in electrical engineering and applied physics, as well as a reference book for those actively involved in solar cell research and development.
The Physics Of Solar Cells
Author: Jenny A Nelson
Publisher: World Scientific Publishing Company
ISBN: 1848168233
Category : Science
Languages : en
Pages : 387
Book Description
This book provides a comprehensive introduction to the physics of the photovoltaic cell. It is suitable for undergraduates, graduate students, and researchers new to the field. It covers: basic physics of semiconductors in photovoltaic devices; physical models of solar cell operation; characteristics and design of common types of solar cell; and approaches to increasing solar cell efficiency. The text explains the terms and concepts of solar cell device physics and shows the reader how to formulate and solve relevant physical problems. Exercises and worked solutions are included.
Publisher: World Scientific Publishing Company
ISBN: 1848168233
Category : Science
Languages : en
Pages : 387
Book Description
This book provides a comprehensive introduction to the physics of the photovoltaic cell. It is suitable for undergraduates, graduate students, and researchers new to the field. It covers: basic physics of semiconductors in photovoltaic devices; physical models of solar cell operation; characteristics and design of common types of solar cell; and approaches to increasing solar cell efficiency. The text explains the terms and concepts of solar cell device physics and shows the reader how to formulate and solve relevant physical problems. Exercises and worked solutions are included.
Organic Solar Cells
Author: Wallace C.H. Choy
Publisher: Springer Science & Business Media
ISBN: 1447148231
Category : Technology & Engineering
Languages : en
Pages : 268
Book Description
Organic solar cells have emerged as new promising photovoltaic devices due to their potential applications in large area, printable and flexible solar panels. Organic Solar Cells: Materials and Device Physics offers an updated review on the topics covering the synthesis, properties and applications of new materials for various critical roles in devices from electrodes, interface and carrier transport materials, to the active layer composed of donors and acceptors. Addressing the important device physics issues of carrier and exciton dynamics and interface stability and novel light trapping structures, the potential for hybrid organic solar cells to provide high efficiency solar cells is examined and discussed in detail. Specific chapters covers key areas including: Latest research and designs for highly effective polymer donors/acceptors and interface materials Synthesis and application of highly transparent and conductive graphene Exciton and charge dynamics for in-depth understanding of the mechanism underlying organic solar cells. New potentials and emerging functionalities of plasmonic effects in OSCs Interface Degradation Mechanisms in organic photovoltaics improving the entire device lifetime Device architecture and operation mechanism of organic/ inorganic hybrid solar cells for next generation of high performance photovoltaics This reference can be practically and theoretically applied by senior undergraduates, postgraduates, engineers, scientists, researchers, and project managers with some fundamental knowledge in organic and inorganic semiconductor materials or devices.
Publisher: Springer Science & Business Media
ISBN: 1447148231
Category : Technology & Engineering
Languages : en
Pages : 268
Book Description
Organic solar cells have emerged as new promising photovoltaic devices due to their potential applications in large area, printable and flexible solar panels. Organic Solar Cells: Materials and Device Physics offers an updated review on the topics covering the synthesis, properties and applications of new materials for various critical roles in devices from electrodes, interface and carrier transport materials, to the active layer composed of donors and acceptors. Addressing the important device physics issues of carrier and exciton dynamics and interface stability and novel light trapping structures, the potential for hybrid organic solar cells to provide high efficiency solar cells is examined and discussed in detail. Specific chapters covers key areas including: Latest research and designs for highly effective polymer donors/acceptors and interface materials Synthesis and application of highly transparent and conductive graphene Exciton and charge dynamics for in-depth understanding of the mechanism underlying organic solar cells. New potentials and emerging functionalities of plasmonic effects in OSCs Interface Degradation Mechanisms in organic photovoltaics improving the entire device lifetime Device architecture and operation mechanism of organic/ inorganic hybrid solar cells for next generation of high performance photovoltaics This reference can be practically and theoretically applied by senior undergraduates, postgraduates, engineers, scientists, researchers, and project managers with some fundamental knowledge in organic and inorganic semiconductor materials or devices.
Organic Solar Cells
Author: Pankaj Kumar
Publisher: CRC Press
ISBN: 1315353628
Category : Science
Languages : en
Pages : 452
Book Description
This book contains detailed information on the types, structure, fabrication, and characterization of organic solar cells (OSCs). It discusses processes to improve efficiencies and the prevention of degradation in OSCs. It compares the cost-effectiveness of OSCs to those based on crystalline silicon and discusses ways to make OSCs more economical. This book provides a practical guide for the fabrication, processing, and characterization of OSCs and paves the way for further development in OSC technology.
Publisher: CRC Press
ISBN: 1315353628
Category : Science
Languages : en
Pages : 452
Book Description
This book contains detailed information on the types, structure, fabrication, and characterization of organic solar cells (OSCs). It discusses processes to improve efficiencies and the prevention of degradation in OSCs. It compares the cost-effectiveness of OSCs to those based on crystalline silicon and discusses ways to make OSCs more economical. This book provides a practical guide for the fabrication, processing, and characterization of OSCs and paves the way for further development in OSC technology.
The Physics of Solar Cells
Author: Juan Bisquert
Publisher: CRC Press
ISBN: 1351395572
Category : Science
Languages : en
Pages : 336
Book Description
The book provides an explanation of the operation of photovoltaic devices from a broad perspective that embraces a variety of materials concepts, from nanostructured and highly disordered organic materials, to highly efficient devices such as the lead halide perovskite solar cells. The book establishes from the beginning a simple but very rich model of a solar cell, in order to develop and understand step by step the photovoltaic operation according to fundamental physical properties and constraints. It emphasizes the aspects pertaining to the functioning of a solar cell and the determination of limiting efficiencies of energy conversion. The final chapters of the book establish a more refined and realistic treatment of the many factors that determine the actual performance of experimental devices: transport gradients, interfacial recombination, optical losses and so forth. The book finishes with a short review of additional important aspects of solar energy conversion, such as the photonic aspects of spectral modification, and the direct conversion of solar photons to chemical fuel via electrochemical reactions.
Publisher: CRC Press
ISBN: 1351395572
Category : Science
Languages : en
Pages : 336
Book Description
The book provides an explanation of the operation of photovoltaic devices from a broad perspective that embraces a variety of materials concepts, from nanostructured and highly disordered organic materials, to highly efficient devices such as the lead halide perovskite solar cells. The book establishes from the beginning a simple but very rich model of a solar cell, in order to develop and understand step by step the photovoltaic operation according to fundamental physical properties and constraints. It emphasizes the aspects pertaining to the functioning of a solar cell and the determination of limiting efficiencies of energy conversion. The final chapters of the book establish a more refined and realistic treatment of the many factors that determine the actual performance of experimental devices: transport gradients, interfacial recombination, optical losses and so forth. The book finishes with a short review of additional important aspects of solar energy conversion, such as the photonic aspects of spectral modification, and the direct conversion of solar photons to chemical fuel via electrochemical reactions.
High-Efficiency Solar Cells
Author: Xiaodong Wang
Publisher: Springer Science & Business Media
ISBN: 3319019880
Category : Technology & Engineering
Languages : en
Pages : 664
Book Description
As part of the effort to increase the contribution of solar cells (photovoltaics) to our energy mix, this book addresses three main areas: making existing technology cheaper, promoting advanced technologies based on new architectural designs, and developing new materials to serve as light absorbers. Leading scientists throughout the world create a fundamental platform for knowledge sharing that combines the physics, materials, and device architectures of high-efficiency solar cells. While providing a comprehensive introduction to the field, the book highlights directions for further research, and is intended to stimulate readers’ interest in the development of novel materials and technologies for solar energy applications.
Publisher: Springer Science & Business Media
ISBN: 3319019880
Category : Technology & Engineering
Languages : en
Pages : 664
Book Description
As part of the effort to increase the contribution of solar cells (photovoltaics) to our energy mix, this book addresses three main areas: making existing technology cheaper, promoting advanced technologies based on new architectural designs, and developing new materials to serve as light absorbers. Leading scientists throughout the world create a fundamental platform for knowledge sharing that combines the physics, materials, and device architectures of high-efficiency solar cells. While providing a comprehensive introduction to the field, the book highlights directions for further research, and is intended to stimulate readers’ interest in the development of novel materials and technologies for solar energy applications.
Physics of Solar Cells
Author: Peter Würfel
Publisher: John Wiley & Sons
ISBN: 352741309X
Category : Science
Languages : en
Pages : 288
Book Description
The new edition of this highly regarded textbook provides a detailed overview of the most important characterization techniques for solar cells and a discussion of their advantages and disadvantages. It describes in detail all aspects of solar cell function, the physics behind every single step, as well as all the issues to be considered when improving solar cells and their efficiency. The text is now complete with examples of how the appropriate characterization techniques enable the distinction between several potential limitation factors, describing how quantities that have been introduced theoretically in earlier chapters become experimentally accessible. With exercises after each chapter to reinforce the newly acquired knowledge and requiring no more than standard physics knowledge, this book enables students and professionals to understand the factors driving conversion efficiency and to apply this to their own solar cell development.
Publisher: John Wiley & Sons
ISBN: 352741309X
Category : Science
Languages : en
Pages : 288
Book Description
The new edition of this highly regarded textbook provides a detailed overview of the most important characterization techniques for solar cells and a discussion of their advantages and disadvantages. It describes in detail all aspects of solar cell function, the physics behind every single step, as well as all the issues to be considered when improving solar cells and their efficiency. The text is now complete with examples of how the appropriate characterization techniques enable the distinction between several potential limitation factors, describing how quantities that have been introduced theoretically in earlier chapters become experimentally accessible. With exercises after each chapter to reinforce the newly acquired knowledge and requiring no more than standard physics knowledge, this book enables students and professionals to understand the factors driving conversion efficiency and to apply this to their own solar cell development.
Thin-Film Silicon Solar Cells
Author: Arvind Victor Shah
Publisher: CRC Press
ISBN: 1439808104
Category : Science
Languages : en
Pages : 438
Book Description
Photovoltaic technology has now developed to the extent that it is close to fulfilling the vision of a "solar-energy world," as devices based on this technology are becoming efficient, low-cost and durable. This book provides a comprehensive treatment of thin-film silicon, a prevalent PV material, in terms of its semiconductor nature, startin
Publisher: CRC Press
ISBN: 1439808104
Category : Science
Languages : en
Pages : 438
Book Description
Photovoltaic technology has now developed to the extent that it is close to fulfilling the vision of a "solar-energy world," as devices based on this technology are becoming efficient, low-cost and durable. This book provides a comprehensive treatment of thin-film silicon, a prevalent PV material, in terms of its semiconductor nature, startin
Fundamentals of Solar Cell Design
Author: Inamuddin
Publisher: John Wiley & Sons
ISBN: 1119724708
Category : Science
Languages : en
Pages : 578
Book Description
Edited by one of the most well-respected and prolific engineers in the world and his team, this book provides a comprehensive overview of solar cells and explores the history of evolution and present scenarios of solar cell design, classification, properties, various semiconductor materials, thin films, wafer-scale, transparent solar cells, and other fundamentals of solar cell design. Solar cells are semiconductor devices that convert light photons into electricity in photovoltaic energy conversion and can help to overcome the global energy crisis. Solar cells have many applications including remote area power systems, earth-orbiting satellites, wristwatches, water pumping, photodetectors and remote radiotelephones. Solar cell technology is economically feasible for commercial-scale power generation. While commercial solar cells exhibit good performance and stability, still researchers are looking at many ways to improve the performance and cost of solar cells via modulating the fundamental properties of semiconductors. Solar cell technology is the key to a clean energy future. Solar cells directly harvested energy from the sun’s light radiation into electricity are in an ever-growing demand for future global energy production. Solar cell-based energy harvesting has attracted worldwide attention for its notable features, such as cheap renewable technology, scalable, lightweight, flexibility, versatility, no greenhouse gas emission, and economy friendly and operational costs. Thus, solar cell technology is at the forefront of renewable energy technologies which are used in telecommunications, power plants, small devices to satellites. Large-scale implementation can be manipulated by various types used in solar cell design and exploration of new materials towards improving performance and reducing cost. Therefore, in-depth knowledge about solar cell design is fundamental for those who wish to apply this knowledge and understanding in industries and academics. This book provides a comprehensive overview on solar cells and explores the history to evolution and present scenarios of solar cell design, classification, properties, various semiconductor materials, thin films, wafer-scale, transparent solar cells, and so on. It also includes solar cells’ characterization, analytical tools, theoretical modeling, practices to enhance conversion efficiencies, applications and patents. This outstanding new volume: Provides state-of-the-art information about solar cells Is a unique reference guide for researchers in solar energy Includes novel innovations in the field of solar cell technology Audience: This book is a unique reference guide that can be used by faculty, students, researchers, engineers, device designers and industrialists who are working and learning in the fields of semiconductors, chemistry, physics, electronics, light science, material science, flexible energy conversion, industrial, and renewable energy sectors..
Publisher: John Wiley & Sons
ISBN: 1119724708
Category : Science
Languages : en
Pages : 578
Book Description
Edited by one of the most well-respected and prolific engineers in the world and his team, this book provides a comprehensive overview of solar cells and explores the history of evolution and present scenarios of solar cell design, classification, properties, various semiconductor materials, thin films, wafer-scale, transparent solar cells, and other fundamentals of solar cell design. Solar cells are semiconductor devices that convert light photons into electricity in photovoltaic energy conversion and can help to overcome the global energy crisis. Solar cells have many applications including remote area power systems, earth-orbiting satellites, wristwatches, water pumping, photodetectors and remote radiotelephones. Solar cell technology is economically feasible for commercial-scale power generation. While commercial solar cells exhibit good performance and stability, still researchers are looking at many ways to improve the performance and cost of solar cells via modulating the fundamental properties of semiconductors. Solar cell technology is the key to a clean energy future. Solar cells directly harvested energy from the sun’s light radiation into electricity are in an ever-growing demand for future global energy production. Solar cell-based energy harvesting has attracted worldwide attention for its notable features, such as cheap renewable technology, scalable, lightweight, flexibility, versatility, no greenhouse gas emission, and economy friendly and operational costs. Thus, solar cell technology is at the forefront of renewable energy technologies which are used in telecommunications, power plants, small devices to satellites. Large-scale implementation can be manipulated by various types used in solar cell design and exploration of new materials towards improving performance and reducing cost. Therefore, in-depth knowledge about solar cell design is fundamental for those who wish to apply this knowledge and understanding in industries and academics. This book provides a comprehensive overview on solar cells and explores the history to evolution and present scenarios of solar cell design, classification, properties, various semiconductor materials, thin films, wafer-scale, transparent solar cells, and so on. It also includes solar cells’ characterization, analytical tools, theoretical modeling, practices to enhance conversion efficiencies, applications and patents. This outstanding new volume: Provides state-of-the-art information about solar cells Is a unique reference guide for researchers in solar energy Includes novel innovations in the field of solar cell technology Audience: This book is a unique reference guide that can be used by faculty, students, researchers, engineers, device designers and industrialists who are working and learning in the fields of semiconductors, chemistry, physics, electronics, light science, material science, flexible energy conversion, industrial, and renewable energy sectors..
Organic Solar Cells
Author: Qiquan Qiao
Publisher: CRC Press
ISBN: 1482229846
Category : Science
Languages : en
Pages : 426
Book Description
Current energy consumption mainly depends on fossil fuels that are limited and can cause environmental issues such as greenhouse gas emissions and global warming. These factors have stimulated the search for alternate, clean, and renewable energy sources. Solar cells are some of the most promising clean and readily available energy sources. Plus, the successful utilization of solar energy can help reduce the dependence on fossil fuels. Recently, organic solar cells have gained extensive attention as a next-generation photovoltaic technology due to their light weight, mechanical flexibility, and solution-based cost-effective processing. Organic Solar Cells: Materials, Devices, Interfaces, and Modeling provides an in-depth understanding of the current state of the art of organic solar cell technology. Encompassing the full spectrum of organic solar cell materials, modeling and simulation, and device physics and engineering, this comprehensive text: Discusses active layer, interfacial, and transparent electrode materials Explains how to relate synthesis parameters to morphology of the photoactive layer using molecular dynamics simulations Offers insight into coupling morphology and interfaces with charge transport in organic solar cells Explores photoexcited carrier dynamics, defect states, interface engineering, and nanophase separation Covers inorganic–organic hybrids, tandem structure, and graphene-based polymer solar cells Organic Solar Cells: Materials, Devices, Interfaces, and Modeling makes an ideal reference for scientists and engineers as well as researchers and students entering the field from broad disciplines including chemistry, material science and engineering, physics, nanotechnology, nanoscience, and electrical engineering.
Publisher: CRC Press
ISBN: 1482229846
Category : Science
Languages : en
Pages : 426
Book Description
Current energy consumption mainly depends on fossil fuels that are limited and can cause environmental issues such as greenhouse gas emissions and global warming. These factors have stimulated the search for alternate, clean, and renewable energy sources. Solar cells are some of the most promising clean and readily available energy sources. Plus, the successful utilization of solar energy can help reduce the dependence on fossil fuels. Recently, organic solar cells have gained extensive attention as a next-generation photovoltaic technology due to their light weight, mechanical flexibility, and solution-based cost-effective processing. Organic Solar Cells: Materials, Devices, Interfaces, and Modeling provides an in-depth understanding of the current state of the art of organic solar cell technology. Encompassing the full spectrum of organic solar cell materials, modeling and simulation, and device physics and engineering, this comprehensive text: Discusses active layer, interfacial, and transparent electrode materials Explains how to relate synthesis parameters to morphology of the photoactive layer using molecular dynamics simulations Offers insight into coupling morphology and interfaces with charge transport in organic solar cells Explores photoexcited carrier dynamics, defect states, interface engineering, and nanophase separation Covers inorganic–organic hybrids, tandem structure, and graphene-based polymer solar cells Organic Solar Cells: Materials, Devices, Interfaces, and Modeling makes an ideal reference for scientists and engineers as well as researchers and students entering the field from broad disciplines including chemistry, material science and engineering, physics, nanotechnology, nanoscience, and electrical engineering.