Author: Tope Omitola
Publisher: Springer Nature
ISBN: 3031794591
Category : Mathematics
Languages : en
Pages : 138
Book Description
The past ten years have seen a rapid growth in the numbers of people signing up to use Web-based social networks (hundreds of millions of new members are now joining the main services each year) with a large amount of content being shared on these networks (tens of billions of content items are shared each month). With this growth in usage and data being generated, there are many opportunities to discover the knowledge that is often inherent but somewhat hidden in these networks. Web mining techniques are being used to derive this hidden knowledge. In addition, the Semantic Web, including the Linked Data initiative to connect previously disconnected datasets, is making it possible to connect data from across various social spaces through common representations and agreed upon terms for people, content items, etc. In this book, we detail some current research being carried out to semantically represent the implicit and explicit structures on the Social Web, along with the techniques being used to elicit relevant knowledge from these structures, and we present the mechanisms that can be used to intelligently mesh these semantic representations with intelligent knowledge discovery processes. We begin this book with an overview of the origins of the Web, and then show how web intelligence can be derived from a combination of web and Social Web mining. We give an overview of the Social and Semantic Webs, followed by a description of the combined Social Semantic Web (along with some of the possibilities it affords), and the various semantic representation formats for the data created in social networks and on social media sites. Provenance and provenance mining is an important aspect here, especially when data is combined from multiple services. We will expand on the subject of provenance and especially its importance in relation to social data. We will describe extensions to social semantic vocabularies specifically designed for community mining purposes (SIOCM). In the last three chapters, we describe how the combination of web intelligence and social semantic data can be used to derive knowledge from the Social Web, starting at the community level (macro), and then moving through group mining (meso) to user profile mining (micro).
Social Semantic Web Mining
Author: Tope Omitola
Publisher: Springer Nature
ISBN: 3031794591
Category : Mathematics
Languages : en
Pages : 138
Book Description
The past ten years have seen a rapid growth in the numbers of people signing up to use Web-based social networks (hundreds of millions of new members are now joining the main services each year) with a large amount of content being shared on these networks (tens of billions of content items are shared each month). With this growth in usage and data being generated, there are many opportunities to discover the knowledge that is often inherent but somewhat hidden in these networks. Web mining techniques are being used to derive this hidden knowledge. In addition, the Semantic Web, including the Linked Data initiative to connect previously disconnected datasets, is making it possible to connect data from across various social spaces through common representations and agreed upon terms for people, content items, etc. In this book, we detail some current research being carried out to semantically represent the implicit and explicit structures on the Social Web, along with the techniques being used to elicit relevant knowledge from these structures, and we present the mechanisms that can be used to intelligently mesh these semantic representations with intelligent knowledge discovery processes. We begin this book with an overview of the origins of the Web, and then show how web intelligence can be derived from a combination of web and Social Web mining. We give an overview of the Social and Semantic Webs, followed by a description of the combined Social Semantic Web (along with some of the possibilities it affords), and the various semantic representation formats for the data created in social networks and on social media sites. Provenance and provenance mining is an important aspect here, especially when data is combined from multiple services. We will expand on the subject of provenance and especially its importance in relation to social data. We will describe extensions to social semantic vocabularies specifically designed for community mining purposes (SIOCM). In the last three chapters, we describe how the combination of web intelligence and social semantic data can be used to derive knowledge from the Social Web, starting at the community level (macro), and then moving through group mining (meso) to user profile mining (micro).
Publisher: Springer Nature
ISBN: 3031794591
Category : Mathematics
Languages : en
Pages : 138
Book Description
The past ten years have seen a rapid growth in the numbers of people signing up to use Web-based social networks (hundreds of millions of new members are now joining the main services each year) with a large amount of content being shared on these networks (tens of billions of content items are shared each month). With this growth in usage and data being generated, there are many opportunities to discover the knowledge that is often inherent but somewhat hidden in these networks. Web mining techniques are being used to derive this hidden knowledge. In addition, the Semantic Web, including the Linked Data initiative to connect previously disconnected datasets, is making it possible to connect data from across various social spaces through common representations and agreed upon terms for people, content items, etc. In this book, we detail some current research being carried out to semantically represent the implicit and explicit structures on the Social Web, along with the techniques being used to elicit relevant knowledge from these structures, and we present the mechanisms that can be used to intelligently mesh these semantic representations with intelligent knowledge discovery processes. We begin this book with an overview of the origins of the Web, and then show how web intelligence can be derived from a combination of web and Social Web mining. We give an overview of the Social and Semantic Webs, followed by a description of the combined Social Semantic Web (along with some of the possibilities it affords), and the various semantic representation formats for the data created in social networks and on social media sites. Provenance and provenance mining is an important aspect here, especially when data is combined from multiple services. We will expand on the subject of provenance and especially its importance in relation to social data. We will describe extensions to social semantic vocabularies specifically designed for community mining purposes (SIOCM). In the last three chapters, we describe how the combination of web intelligence and social semantic data can be used to derive knowledge from the Social Web, starting at the community level (macro), and then moving through group mining (meso) to user profile mining (micro).
Web Mining and Social Networking
Author: Guandong Xu
Publisher: Springer Science & Business Media
ISBN: 144197735X
Category : Computers
Languages : en
Pages : 218
Book Description
This book examines the techniques and applications involved in the Web Mining, Web Personalization and Recommendation and Web Community Analysis domains, including a detailed presentation of the principles, developed algorithms, and systems of the research in these areas. The applications of web mining, and the issue of how to incorporate web mining into web personalization and recommendation systems are also reviewed. Additionally, the volume explores web community mining and analysis to find the structural, organizational and temporal developments of web communities and reveal the societal sense of individuals or communities. The volume will benefit both academic and industry communities interested in the techniques and applications of web search, web data management, web mining and web knowledge discovery, as well as web community and social network analysis.
Publisher: Springer Science & Business Media
ISBN: 144197735X
Category : Computers
Languages : en
Pages : 218
Book Description
This book examines the techniques and applications involved in the Web Mining, Web Personalization and Recommendation and Web Community Analysis domains, including a detailed presentation of the principles, developed algorithms, and systems of the research in these areas. The applications of web mining, and the issue of how to incorporate web mining into web personalization and recommendation systems are also reviewed. Additionally, the volume explores web community mining and analysis to find the structural, organizational and temporal developments of web communities and reveal the societal sense of individuals or communities. The volume will benefit both academic and industry communities interested in the techniques and applications of web search, web data management, web mining and web knowledge discovery, as well as web community and social network analysis.
Social Media Mining and Social Network Analysis: Emerging Research
Author: Xu, Guandong
Publisher: IGI Global
ISBN: 1466628073
Category : Computers
Languages : en
Pages : 272
Book Description
Social Media Mining and Social Network Analysis: Emerging Research highlights the advancements made in social network analysis and social web mining and its influence in the fields of computer science, information systems, sociology, organization science discipline and much more. This collection of perspectives on developmental practice is useful for industrial practitioners as well as researchers and scholars.
Publisher: IGI Global
ISBN: 1466628073
Category : Computers
Languages : en
Pages : 272
Book Description
Social Media Mining and Social Network Analysis: Emerging Research highlights the advancements made in social network analysis and social web mining and its influence in the fields of computer science, information systems, sociology, organization science discipline and much more. This collection of perspectives on developmental practice is useful for industrial practitioners as well as researchers and scholars.
Data Mining in Dynamic Social Networks and Fuzzy Systems
Author: Bhatnagar, Vishal
Publisher: IGI Global
ISBN: 1466642149
Category : Computers
Languages : en
Pages : 412
Book Description
Many organizations, whether in the public or private sector, have begun to take advantage of the tools and techniques used for data mining. Utilizing data mining tools, these organizations are able to reveal the hidden and unknown information from available data. Data Mining in Dynamic Social Networks and Fuzzy Systems brings together research on the latest trends and patterns of data mining tools and techniques in dynamic social networks and fuzzy systems. With these improved modern techniques of data mining, this publication aims to provide insight and support to researchers and professionals concerned with the management of expertise, knowledge, information, and organizational development.
Publisher: IGI Global
ISBN: 1466642149
Category : Computers
Languages : en
Pages : 412
Book Description
Many organizations, whether in the public or private sector, have begun to take advantage of the tools and techniques used for data mining. Utilizing data mining tools, these organizations are able to reveal the hidden and unknown information from available data. Data Mining in Dynamic Social Networks and Fuzzy Systems brings together research on the latest trends and patterns of data mining tools and techniques in dynamic social networks and fuzzy systems. With these improved modern techniques of data mining, this publication aims to provide insight and support to researchers and professionals concerned with the management of expertise, knowledge, information, and organizational development.
Knowledge Representation in the Social Semantic Web
Author: Katrin Weller
Publisher: Walter de Gruyter
ISBN: 3598251807
Category : Computers
Languages : en
Pages : 458
Book Description
The main purpose of this book is to sum up the vital and highly topical research issue of knowledge representation on the Web and to discuss novel solutions by combining benefits of folksonomies and Web 2.0 approaches with ontologies and semantic technologies. The book contains an overview of knowledge representation approaches in past, present and future, introduction to ontologies, Web indexing and in first case the novel approaches of developing ontologies.
Publisher: Walter de Gruyter
ISBN: 3598251807
Category : Computers
Languages : en
Pages : 458
Book Description
The main purpose of this book is to sum up the vital and highly topical research issue of knowledge representation on the Web and to discuss novel solutions by combining benefits of folksonomies and Web 2.0 approaches with ontologies and semantic technologies. The book contains an overview of knowledge representation approaches in past, present and future, introduction to ontologies, Web indexing and in first case the novel approaches of developing ontologies.
Big Data Analytics: Systems, Algorithms, Applications
Author: C.S.R. Prabhu
Publisher: Springer Nature
ISBN: 9811500940
Category : Computers
Languages : en
Pages : 422
Book Description
This book provides a comprehensive survey of techniques, technologies and applications of Big Data and its analysis. The Big Data phenomenon is increasingly impacting all sectors of business and industry, producing an emerging new information ecosystem. On the applications front, the book offers detailed descriptions of various application areas for Big Data Analytics in the important domains of Social Semantic Web Mining, Banking and Financial Services, Capital Markets, Insurance, Advertisement, Recommendation Systems, Bio-Informatics, the IoT and Fog Computing, before delving into issues of security and privacy. With regard to machine learning techniques, the book presents all the standard algorithms for learning – including supervised, semi-supervised and unsupervised techniques such as clustering and reinforcement learning techniques to perform collective Deep Learning. Multi-layered and nonlinear learning for Big Data are also covered. In turn, the book highlights real-life case studies on successful implementations of Big Data Analytics at large IT companies such as Google, Facebook, LinkedIn and Microsoft. Multi-sectorial case studies on domain-based companies such as Deutsche Bank, the power provider Opower, Delta Airlines and a Chinese City Transportation application represent a valuable addition. Given its comprehensive coverage of Big Data Analytics, the book offers a unique resource for undergraduate and graduate students, researchers, educators and IT professionals alike.
Publisher: Springer Nature
ISBN: 9811500940
Category : Computers
Languages : en
Pages : 422
Book Description
This book provides a comprehensive survey of techniques, technologies and applications of Big Data and its analysis. The Big Data phenomenon is increasingly impacting all sectors of business and industry, producing an emerging new information ecosystem. On the applications front, the book offers detailed descriptions of various application areas for Big Data Analytics in the important domains of Social Semantic Web Mining, Banking and Financial Services, Capital Markets, Insurance, Advertisement, Recommendation Systems, Bio-Informatics, the IoT and Fog Computing, before delving into issues of security and privacy. With regard to machine learning techniques, the book presents all the standard algorithms for learning – including supervised, semi-supervised and unsupervised techniques such as clustering and reinforcement learning techniques to perform collective Deep Learning. Multi-layered and nonlinear learning for Big Data are also covered. In turn, the book highlights real-life case studies on successful implementations of Big Data Analytics at large IT companies such as Google, Facebook, LinkedIn and Microsoft. Multi-sectorial case studies on domain-based companies such as Deutsche Bank, the power provider Opower, Delta Airlines and a Chinese City Transportation application represent a valuable addition. Given its comprehensive coverage of Big Data Analytics, the book offers a unique resource for undergraduate and graduate students, researchers, educators and IT professionals alike.
Mining the Social Web
Author: Matthew Russell
Publisher: "O'Reilly Media, Inc."
ISBN: 1449388345
Category : Computers
Languages : en
Pages : 356
Book Description
Facebook, Twitter, and LinkedIn generate a tremendous amount of valuable social data, but how can you find out who's making connections with social media, what they’re talking about, or where they’re located? This concise and practical book shows you how to answer these questions and more. You'll learn how to combine social web data, analysis techniques, and visualization to help you find what you've been looking for in the social haystack, as well as useful information you didn't know existed. Each standalone chapter introduces techniques for mining data in different areas of the social Web, including blogs and email. All you need to get started is a programming background and a willingness to learn basic Python tools. Get a straightforward synopsis of the social web landscape Use adaptable scripts on GitHub to harvest data from social network APIs such as Twitter, Facebook, and LinkedIn Learn how to employ easy-to-use Python tools to slice and dice the data you collect Explore social connections in microformats with the XHTML Friends Network Apply advanced mining techniques such as TF-IDF, cosine similarity, collocation analysis, document summarization, and clique detection Build interactive visualizations with web technologies based upon HTML5 and JavaScript toolkits "Let Matthew Russell serve as your guide to working with social data sets old (email, blogs) and new (Twitter, LinkedIn, Facebook). Mining the Social Web is a natural successor to Programming Collective Intelligence: a practical, hands-on approach to hacking on data from the social Web with Python." --Jeff Hammerbacher, Chief Scientist, Cloudera "A rich, compact, useful, practical introduction to a galaxy of tools, techniques, and theories for exploring structured and unstructured data." --Alex Martelli, Senior Staff Engineer, Google
Publisher: "O'Reilly Media, Inc."
ISBN: 1449388345
Category : Computers
Languages : en
Pages : 356
Book Description
Facebook, Twitter, and LinkedIn generate a tremendous amount of valuable social data, but how can you find out who's making connections with social media, what they’re talking about, or where they’re located? This concise and practical book shows you how to answer these questions and more. You'll learn how to combine social web data, analysis techniques, and visualization to help you find what you've been looking for in the social haystack, as well as useful information you didn't know existed. Each standalone chapter introduces techniques for mining data in different areas of the social Web, including blogs and email. All you need to get started is a programming background and a willingness to learn basic Python tools. Get a straightforward synopsis of the social web landscape Use adaptable scripts on GitHub to harvest data from social network APIs such as Twitter, Facebook, and LinkedIn Learn how to employ easy-to-use Python tools to slice and dice the data you collect Explore social connections in microformats with the XHTML Friends Network Apply advanced mining techniques such as TF-IDF, cosine similarity, collocation analysis, document summarization, and clique detection Build interactive visualizations with web technologies based upon HTML5 and JavaScript toolkits "Let Matthew Russell serve as your guide to working with social data sets old (email, blogs) and new (Twitter, LinkedIn, Facebook). Mining the Social Web is a natural successor to Programming Collective Intelligence: a practical, hands-on approach to hacking on data from the social Web with Python." --Jeff Hammerbacher, Chief Scientist, Cloudera "A rich, compact, useful, practical introduction to a galaxy of tools, techniques, and theories for exploring structured and unstructured data." --Alex Martelli, Senior Staff Engineer, Google
Social Networks and the Semantic Web
Author: Peter Mika
Publisher: Springer Science & Business Media
ISBN: 0387710019
Category : Computers
Languages : en
Pages : 237
Book Description
Social Networks and the Semantic Web offers valuable information to practitioners developing social-semantic software for the Web. It provides two major case studies. The first case study shows the possibilities of tracking a research community over the Web. It reveals how social network mining from the web plays an important role for obtaining large scale, dynamic network data beyond the possibilities of survey methods. The second case study highlights the role of the social context in user-generated classifications in content, such as the tagging systems known as folksonomies.
Publisher: Springer Science & Business Media
ISBN: 0387710019
Category : Computers
Languages : en
Pages : 237
Book Description
Social Networks and the Semantic Web offers valuable information to practitioners developing social-semantic software for the Web. It provides two major case studies. The first case study shows the possibilities of tracking a research community over the Web. It reveals how social network mining from the web plays an important role for obtaining large scale, dynamic network data beyond the possibilities of survey methods. The second case study highlights the role of the social context in user-generated classifications in content, such as the tagging systems known as folksonomies.
Handbook of Social Network Technologies and Applications
Author: Borko Furht
Publisher: Springer Science & Business Media
ISBN: 1441971424
Category : Computers
Languages : en
Pages : 718
Book Description
Social networking is a concept that has existed for a long time; however, with the explosion of the Internet, social networking has become a tool for people to connect and communicate in ways that were impossible in the past. The recent development of Web 2.0 has provided many new applications, such as Myspace, Facebook, and LinkedIn. The purpose of Handbook of Social Network Technologies and Applications is to provide comprehensive guidelines on the current and future trends in social network technologies and applications in the field of Web-based Social Networks. This handbook includes contributions from world experts in the field of social networks from both academia and private industry. A number of crucial topics are covered including Web and software technologies and communication technologies for social networks. Web-mining techniques, visualization techniques, intelligent social networks, Semantic Web, and many other topics are covered. Standards for social networks, case studies, and a variety of applications are covered as well.
Publisher: Springer Science & Business Media
ISBN: 1441971424
Category : Computers
Languages : en
Pages : 718
Book Description
Social networking is a concept that has existed for a long time; however, with the explosion of the Internet, social networking has become a tool for people to connect and communicate in ways that were impossible in the past. The recent development of Web 2.0 has provided many new applications, such as Myspace, Facebook, and LinkedIn. The purpose of Handbook of Social Network Technologies and Applications is to provide comprehensive guidelines on the current and future trends in social network technologies and applications in the field of Web-based Social Networks. This handbook includes contributions from world experts in the field of social networks from both academia and private industry. A number of crucial topics are covered including Web and software technologies and communication technologies for social networks. Web-mining techniques, visualization techniques, intelligent social networks, Semantic Web, and many other topics are covered. Standards for social networks, case studies, and a variety of applications are covered as well.
Foundations for the Web of Information and Services
Author: Dieter Fensel
Publisher: Springer Science & Business Media
ISBN: 3642197973
Category : Computers
Languages : en
Pages : 353
Book Description
In the mid 1990s, Tim Berners-Lee had the idea of developing the World Wide Web into a „Semantic Web“, a web of information that could be interpreted by machines in order to allow the automatic exploitation of data, which until then had to be done by humans manually. One of the first people to research topics related to the Semantic Web was Professor Rudi Studer. From the beginning, Rudi drove projects like ONTOBROKER and On-to-Knowledge, which later resulted in W3C standards such as RDF and OWL. By the late 1990s, Rudi had established a research group at the University of Karlsruhe, which later became the nucleus and breeding ground for Semantic Web research, and many of today’s well-known research groups were either founded by his disciples or benefited from close cooperation with this think tank. In this book, published in celebration of Rudi’s 60th birthday, many of his colleagues look back on the main research results achieved during the last 20 years. Under the editorship of Dieter Fensel, once one of Rudi’s early PhD students, an impressive list of contributors and contributions has been collected, covering areas like Knowledge Management, Ontology Engineering, Service Management, and Semantic Search. Overall, this book provides an excellent overview of the state of the art in Semantic Web research, by combining historical roots with the latest results, which may finally make the dream of a “Web of knowledge, software and services” come true.
Publisher: Springer Science & Business Media
ISBN: 3642197973
Category : Computers
Languages : en
Pages : 353
Book Description
In the mid 1990s, Tim Berners-Lee had the idea of developing the World Wide Web into a „Semantic Web“, a web of information that could be interpreted by machines in order to allow the automatic exploitation of data, which until then had to be done by humans manually. One of the first people to research topics related to the Semantic Web was Professor Rudi Studer. From the beginning, Rudi drove projects like ONTOBROKER and On-to-Knowledge, which later resulted in W3C standards such as RDF and OWL. By the late 1990s, Rudi had established a research group at the University of Karlsruhe, which later became the nucleus and breeding ground for Semantic Web research, and many of today’s well-known research groups were either founded by his disciples or benefited from close cooperation with this think tank. In this book, published in celebration of Rudi’s 60th birthday, many of his colleagues look back on the main research results achieved during the last 20 years. Under the editorship of Dieter Fensel, once one of Rudi’s early PhD students, an impressive list of contributors and contributions has been collected, covering areas like Knowledge Management, Ontology Engineering, Service Management, and Semantic Search. Overall, this book provides an excellent overview of the state of the art in Semantic Web research, by combining historical roots with the latest results, which may finally make the dream of a “Web of knowledge, software and services” come true.