Author: Suleyman Senyurt
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 13
Book Description
In this paper, we investigate special Smarandache curves with regard to Sabban frame for Bertrand partner curve spherical indicatrix. Some results have been obtained. These results were expressed depending on the Bertrand curve. Besides, we are given examples of our results.
Smarandache Curves for Spherical Indicatrix of the Bertrand Curves Pair
Author: Suleyman Senyurt
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 13
Book Description
In this paper, we investigate special Smarandache curves with regard to Sabban frame for Bertrand partner curve spherical indicatrix. Some results have been obtained. These results were expressed depending on the Bertrand curve. Besides, we are given examples of our results.
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 13
Book Description
In this paper, we investigate special Smarandache curves with regard to Sabban frame for Bertrand partner curve spherical indicatrix. Some results have been obtained. These results were expressed depending on the Bertrand curve. Besides, we are given examples of our results.
Ruled and Rotational Surfaces Generated by Non-Null Curves with Zero Weighted Curvature
Author: Mustafa Altın
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 19
Book Description
In this study, firstly we give the weighted curvatures of non-null planar curves in Lorentz-Minkowski space with density eax2+by2 and obtain the planar curves whose weighted curvatures vanish in this space under the condition that the constants a and b are not zero at the same time. After giving the Frenet vectors of the non-null planar curves with zero weighted curvature in Lorentz-Minkowski space with density eax2 , we create the Smarandache curves of them.
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 19
Book Description
In this study, firstly we give the weighted curvatures of non-null planar curves in Lorentz-Minkowski space with density eax2+by2 and obtain the planar curves whose weighted curvatures vanish in this space under the condition that the constants a and b are not zero at the same time. After giving the Frenet vectors of the non-null planar curves with zero weighted curvature in Lorentz-Minkowski space with density eax2 , we create the Smarandache curves of them.
A First Course in Differential Geometry
Author: Vaisman
Publisher: CRC Press
ISBN: 9780824770631
Category : Mathematics
Languages : en
Pages : 188
Book Description
This book proposes a new approach which is designed to serve as an introductory course in differential geometry for advanced undergraduate students. It is based on lectures given by the author at several universities, and discusses calculus, topology, and linear algebra.
Publisher: CRC Press
ISBN: 9780824770631
Category : Mathematics
Languages : en
Pages : 188
Book Description
This book proposes a new approach which is designed to serve as an introductory course in differential geometry for advanced undergraduate students. It is based on lectures given by the author at several universities, and discusses calculus, topology, and linear algebra.
Smarandache Curves and Spherical Indicatrices in the Galilean 3-Space
Author: H.S.Abdel-Aziz
Publisher: Infinite Study
ISBN:
Category :
Languages : en
Pages : 13
Book Description
In the present paper, Smarandache curves for some special curves in the threedimensional Galilean space G3are investigated. Moreover, spherical indicatrices for the helix as well as circular helix are introduced. Furthermore, some properties for these curves are given. Finally, in the light of this study, some related examples of these curves are provided.
Publisher: Infinite Study
ISBN:
Category :
Languages : en
Pages : 13
Book Description
In the present paper, Smarandache curves for some special curves in the threedimensional Galilean space G3are investigated. Moreover, spherical indicatrices for the helix as well as circular helix are introduced. Furthermore, some properties for these curves are given. Finally, in the light of this study, some related examples of these curves are provided.
MATHEMATICAL COMBINATORICS (INTERNATIONAL BOOK SERIES)
Author: Linfan MAO
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 135
Book Description
The mathematical combinatorics is a subject that applying combinatorial notion to all mathematics and all sciences for understanding the reality of things in the universe, motivated by CC Conjecture of Dr.Linfan MAO on mathematical sciences. TheMathematical Combinatorics (International Book Series) is a fully refereed international book series with an ISBN number on each issue, sponsored by the MADIS of Chinese Academy of Sciences and published in USA quarterly, which publishes original research papers and survey articles in all aspects of mathematical combinatorics, Smarandachemulti-spaces, Smarandache geometries, non-Euclidean geometry, topology and their applications to other sciences.
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 135
Book Description
The mathematical combinatorics is a subject that applying combinatorial notion to all mathematics and all sciences for understanding the reality of things in the universe, motivated by CC Conjecture of Dr.Linfan MAO on mathematical sciences. TheMathematical Combinatorics (International Book Series) is a fully refereed international book series with an ISBN number on each issue, sponsored by the MADIS of Chinese Academy of Sciences and published in USA quarterly, which publishes original research papers and survey articles in all aspects of mathematical combinatorics, Smarandachemulti-spaces, Smarandache geometries, non-Euclidean geometry, topology and their applications to other sciences.
N∗C∗− Smarandache Curve of Bertrand Curves Pair According to Frenet Frame
Author: Suleyman Senyurt
Publisher: Infinite Study
ISBN:
Category :
Languages : en
Pages : 7
Book Description
It is well known that many studies related to the differential geometry of curves have been made. Especially, by establishing relations between the Frenet Frames in mutual points of two curves several theories have been obtained.
Publisher: Infinite Study
ISBN:
Category :
Languages : en
Pages : 7
Book Description
It is well known that many studies related to the differential geometry of curves have been made. Especially, by establishing relations between the Frenet Frames in mutual points of two curves several theories have been obtained.
SOME SPECIAL CURVES BELONGING TO MANNHEIM CURVES PAIR
Author: Süleyman Şenyurt
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 10
Book Description
In this paper, we investigate special Smarandache curves with regard to Sabban frame for Mannheim partner curve spherical indicatrix. We created Sabban frame belonging to this curves. It was explained Smarandache curves position vector is consisted by Sabban vectors belonging to this curves. Then, we calculated geodesic curvatures of this Smarandache curves. Found results were expressed depending on the Mannheim curve.
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 10
Book Description
In this paper, we investigate special Smarandache curves with regard to Sabban frame for Mannheim partner curve spherical indicatrix. We created Sabban frame belonging to this curves. It was explained Smarandache curves position vector is consisted by Sabban vectors belonging to this curves. Then, we calculated geodesic curvatures of this Smarandache curves. Found results were expressed depending on the Mannheim curve.
Smarandache Curves in Terms of Sabban Frame of Spherical Indicatrix Curves
Author: Suleyman Senyurt
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 15
Book Description
In this paper, we investigate special Smarandache curves in terms of Sabban frame of spherical indicatrix curves and we give some characterization of Smarandache curves. Besides, we illustrate examples of our results.
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 15
Book Description
In this paper, we investigate special Smarandache curves in terms of Sabban frame of spherical indicatrix curves and we give some characterization of Smarandache curves. Besides, we illustrate examples of our results.
Smarandache Geometries & Map Theories with Applications (I) [English and Chinese]
Author: Linfan Mao
Publisher: Infinite Study
ISBN: 1599730197
Category : Mathematics
Languages : en
Pages : 215
Book Description
800x600 Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} Smarandache Geometries as generalizations of Finsler, Riemannian, Weyl, and Kahler Geometries. A Smarandache geometry (SG) is a geometry which has at least one smarandachely denied axiom (1969). An axiom is said smarandachely denied (S-denied) if in the same space the axiom behaves differently (i.e., validated and invalided; or only invalidated but in at least two distinct ways). Thus, as a particular case, Euclidean, Lobachevsky-Bolyai-Gauss, and Riemannian geometries may be united altogether, in the same space, by some SGs. These last geometries can be partially Euclidean and partially non-Euclidean. The novelty of the SG is the fact that they introduce for the first time the degree of negation in geometry, similarly to the degree of falsehood in fuzzy or neutrosophic logic. For example an axiom can be denied in percentage of 30 Also SG are defined on multispaces, i.e. unions of Euclidean and non-Euclidean subspaces, or unions of distinct non-Euclidean spaces. As an example of S-denying, a proposition , which is the conjunction of a set i of propositions, can be invalidated in many ways if it is minimally unsatisfiable, that is, such that the conjunction of any proper subset of the i is satisfied in a structure, but itself is not. Here it is an example of what it means for an axiom to be invalidated in multiple ways [2] : As a particular axiom let's take Euclid's Fifth Postulate. In Euclidean or parabolic geometry a line has one parallel only through a given point. In Lobacevskian or hyperbolic geometry a line has at least two parallels through a given point. In Riemannian or elliptic geometry a line has no parallel through a given point. Whereas in Smarandache geometries there are lines which have no parallels through a given point and other lines which have one or more parallels through a given point (the fifth postulate is invalidated in many ways). Therefore, the Euclid's Fifth Postulate (which asserts that there is only one parallel passing through an exterior point to a given line) can be invalidated in many ways, i.e. Smarandachely denied, as follows: - first invalidation: there is no parallel passing through an exterior point to a given line; - second invalidation: there is a finite number of parallels passing through an exterior point to a given line; - third invalidation: there are infinitely many parallels passing through an exterior point to a given line.
Publisher: Infinite Study
ISBN: 1599730197
Category : Mathematics
Languages : en
Pages : 215
Book Description
800x600 Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} Smarandache Geometries as generalizations of Finsler, Riemannian, Weyl, and Kahler Geometries. A Smarandache geometry (SG) is a geometry which has at least one smarandachely denied axiom (1969). An axiom is said smarandachely denied (S-denied) if in the same space the axiom behaves differently (i.e., validated and invalided; or only invalidated but in at least two distinct ways). Thus, as a particular case, Euclidean, Lobachevsky-Bolyai-Gauss, and Riemannian geometries may be united altogether, in the same space, by some SGs. These last geometries can be partially Euclidean and partially non-Euclidean. The novelty of the SG is the fact that they introduce for the first time the degree of negation in geometry, similarly to the degree of falsehood in fuzzy or neutrosophic logic. For example an axiom can be denied in percentage of 30 Also SG are defined on multispaces, i.e. unions of Euclidean and non-Euclidean subspaces, or unions of distinct non-Euclidean spaces. As an example of S-denying, a proposition , which is the conjunction of a set i of propositions, can be invalidated in many ways if it is minimally unsatisfiable, that is, such that the conjunction of any proper subset of the i is satisfied in a structure, but itself is not. Here it is an example of what it means for an axiom to be invalidated in multiple ways [2] : As a particular axiom let's take Euclid's Fifth Postulate. In Euclidean or parabolic geometry a line has one parallel only through a given point. In Lobacevskian or hyperbolic geometry a line has at least two parallels through a given point. In Riemannian or elliptic geometry a line has no parallel through a given point. Whereas in Smarandache geometries there are lines which have no parallels through a given point and other lines which have one or more parallels through a given point (the fifth postulate is invalidated in many ways). Therefore, the Euclid's Fifth Postulate (which asserts that there is only one parallel passing through an exterior point to a given line) can be invalidated in many ways, i.e. Smarandachely denied, as follows: - first invalidation: there is no parallel passing through an exterior point to a given line; - second invalidation: there is a finite number of parallels passing through an exterior point to a given line; - third invalidation: there are infinitely many parallels passing through an exterior point to a given line.
Introduction to Algorithms for Data Mining and Machine Learning
Author: Xin-She Yang
Publisher: Academic Press
ISBN: 0128172177
Category : Mathematics
Languages : en
Pages : 190
Book Description
Introduction to Algorithms for Data Mining and Machine Learning introduces the essential ideas behind all key algorithms and techniques for data mining and machine learning, along with optimization techniques. Its strong formal mathematical approach, well selected examples, and practical software recommendations help readers develop confidence in their data modeling skills so they can process and interpret data for classification, clustering, curve-fitting and predictions. Masterfully balancing theory and practice, it is especially useful for those who need relevant, well explained, but not rigorous (proofs based) background theory and clear guidelines for working with big data. Presents an informal, theorem-free approach with concise, compact coverage of all fundamental topics Includes worked examples that help users increase confidence in their understanding of key algorithms, thus encouraging self-study Provides algorithms and techniques that can be implemented in any programming language, with each chapter including notes about relevant software packages
Publisher: Academic Press
ISBN: 0128172177
Category : Mathematics
Languages : en
Pages : 190
Book Description
Introduction to Algorithms for Data Mining and Machine Learning introduces the essential ideas behind all key algorithms and techniques for data mining and machine learning, along with optimization techniques. Its strong formal mathematical approach, well selected examples, and practical software recommendations help readers develop confidence in their data modeling skills so they can process and interpret data for classification, clustering, curve-fitting and predictions. Masterfully balancing theory and practice, it is especially useful for those who need relevant, well explained, but not rigorous (proofs based) background theory and clear guidelines for working with big data. Presents an informal, theorem-free approach with concise, compact coverage of all fundamental topics Includes worked examples that help users increase confidence in their understanding of key algorithms, thus encouraging self-study Provides algorithms and techniques that can be implemented in any programming language, with each chapter including notes about relevant software packages