Robust Numerical Methods for Singularly Perturbed Differential Equations

Robust Numerical Methods for Singularly Perturbed Differential Equations PDF Author: Hans-Görg Roos
Publisher: Springer Science & Business Media
ISBN: 3540344675
Category : Mathematics
Languages : en
Pages : 599

Get Book Here

Book Description
This new edition incorporates new developments in numerical methods for singularly perturbed differential equations, focusing on linear convection-diffusion equations and on nonlinear flow problems that appear in computational fluid dynamics.

Robust Numerical Methods for Singularly Perturbed Differential Equations

Robust Numerical Methods for Singularly Perturbed Differential Equations PDF Author: Hans-Görg Roos
Publisher: Springer Science & Business Media
ISBN: 3540344675
Category : Mathematics
Languages : en
Pages : 599

Get Book Here

Book Description
This new edition incorporates new developments in numerical methods for singularly perturbed differential equations, focusing on linear convection-diffusion equations and on nonlinear flow problems that appear in computational fluid dynamics.

The Boundary Function Method for Singular Perturbed Problems

The Boundary Function Method for Singular Perturbed Problems PDF Author: Adelaida B. Vasil'eva
Publisher: SIAM
ISBN: 0898713331
Category : Mathematics
Languages : en
Pages : 231

Get Book Here

Book Description
This book is devoted solely to the boundary function method, which is one of the asymptotic methods.

Difference Methods for Singular Perturbation Problems

Difference Methods for Singular Perturbation Problems PDF Author: Grigory I. Shishkin
Publisher: CRC Press
ISBN: 0203492412
Category : Mathematics
Languages : en
Pages : 409

Get Book Here

Book Description
Difference Methods for Singular Perturbation Problems focuses on the development of robust difference schemes for wide classes of boundary value problems. It justifies the ε-uniform convergence of these schemes and surveys the latest approaches important for further progress in numerical methods. The first part of the book e

Fitted Numerical Methods For Singular Perturbation Problems: Error Estimates In The Maximum Norm For Linear Problems In One And Two Dimensions (Revised Edition)

Fitted Numerical Methods For Singular Perturbation Problems: Error Estimates In The Maximum Norm For Linear Problems In One And Two Dimensions (Revised Edition) PDF Author: John J H Miller
Publisher: World Scientific
ISBN: 9814452777
Category : Mathematics
Languages : en
Pages : 191

Get Book Here

Book Description
Since the first edition of this book, the literature on fitted mesh methods for singularly perturbed problems has expanded significantly. Over the intervening years, fitted meshes have been shown to be effective for an extensive set of singularly perturbed partial differential equations. In the revised version of this book, the reader will find an introduction to the basic theory associated with fitted numerical methods for singularly perturbed differential equations. Fitted mesh methods focus on the appropriate distribution of the mesh points for singularly perturbed problems. The global errors in the numerical approximations are measured in the pointwise maximum norm. The fitted mesh algorithm is particularly simple to implement in practice, but the theory of why these numerical methods work is far from simple. This book can be used as an introductory text to the theory underpinning fitted mesh methods.

Singular Perturbations and Boundary Layers

Singular Perturbations and Boundary Layers PDF Author: Gung-Min Gie
Publisher: Springer
ISBN: 3030006387
Category : Mathematics
Languages : en
Pages : 424

Get Book Here

Book Description
Singular perturbations occur when a small coefficient affects the highest order derivatives in a system of partial differential equations. From the physical point of view singular perturbations generate in the system under consideration thin layers located often but not always at the boundary of the domains that are called boundary layers or internal layers if the layer is located inside the domain. Important physical phenomena occur in boundary layers. The most common boundary layers appear in fluid mechanics, e.g., the flow of air around an airfoil or a whole airplane, or the flow of air around a car. Also in many instances in geophysical fluid mechanics, like the interface of air and earth, or air and ocean. This self-contained monograph is devoted to the study of certain classes of singular perturbation problems mostly related to thermic, fluid mechanics and optics and where mostly elliptic or parabolic equations in a bounded domain are considered. This book is a fairly unique resource regarding the rigorous mathematical treatment of boundary layer problems. The explicit methodology developed in this book extends in many different directions the concept of correctors initially introduced by J. L. Lions, and in particular the lower- and higher-order error estimates of asymptotic expansions are obtained in the setting of functional analysis. The review of differential geometry and treatment of boundary layers in a curved domain is an additional strength of this book. In the context of fluid mechanics, the outstanding open problem of the vanishing viscosity limit of the Navier-Stokes equations is investigated in this book and solved for a number of particular, but physically relevant cases. This book will serve as a unique resource for those studying singular perturbations and boundary layer problems at the advanced graduate level in mathematics or applied mathematics and may be useful for practitioners in other related fields in science and engineering such as aerodynamics, fluid mechanics, geophysical fluid mechanics, acoustics and optics.

Introduction to Singular Perturbations

Introduction to Singular Perturbations PDF Author: Robert E. Jr. O'Malley
Publisher: Elsevier
ISBN: 0323162274
Category : Mathematics
Languages : en
Pages : 215

Get Book Here

Book Description
Introduction to Singular Perturbations provides an overview of the fundamental techniques for obtaining asymptomatic solutions to boundary value problems. This text explores singular perturbation techniques, which are among the basic tools of several applied scientists. This book is organized into eight chapters, wherein Chapter 1 discusses the method of matched asymptomatic expansions, which has been frequently applied to several physical problems involving singular perturbations. Chapter 2 considers the nonlinear initial value problem to illustrate the regular perturbation method, and Chapter 3 explains how to construct asymptotic solutions for general linear equations. Chapter 4 discusses scalar equations and nonlinear system, whereas Chapters 5 and 6 explain the contrasts for initial value problems where the outer expansion cannot be determined without obtaining the initial values of the boundary layer correction. Chapters 7 and 8 deal with boundary value problem that arises in the study of adiabatic tubular chemical flow reactors with axial diffusion. This monograph is a valuable resource for applied mathematicians, engineers, researchers, students, and readers whose interests span a variety of fields.

Local Fractional Integral Transforms and Their Applications

Local Fractional Integral Transforms and Their Applications PDF Author: Xiao-Jun Yang
Publisher: Academic Press
ISBN: 0128040327
Category : Mathematics
Languages : en
Pages : 263

Get Book Here

Book Description
Local Fractional Integral Transforms and Their Applications provides information on how local fractional calculus has been successfully applied to describe the numerous widespread real-world phenomena in the fields of physical sciences and engineering sciences that involve non-differentiable behaviors. The methods of integral transforms via local fractional calculus have been used to solve various local fractional ordinary and local fractional partial differential equations and also to figure out the presence of the fractal phenomenon. The book presents the basics of the local fractional derivative operators and investigates some new results in the area of local integral transforms. - Provides applications of local fractional Fourier Series - Discusses definitions for local fractional Laplace transforms - Explains local fractional Laplace transforms coupled with analytical methods

Uniform Numerical Methods for Problems with Initial and Boundary Layers

Uniform Numerical Methods for Problems with Initial and Boundary Layers PDF Author: E. P. Doolan
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 348

Get Book Here

Book Description


Singular Perturbation Methods for Ordinary Differential Equations

Singular Perturbation Methods for Ordinary Differential Equations PDF Author: Robert E., Jr. O'Malley
Publisher: Springer Science & Business Media
ISBN: 1461209773
Category : Mathematics
Languages : en
Pages : 234

Get Book Here

Book Description
This book results from various lectures given in recent years. Early drafts were used for several single semester courses on singular perturbation meth ods given at Rensselaer, and a more complete version was used for a one year course at the Technische Universitat Wien. Some portions have been used for short lecture series at Universidad Central de Venezuela, West Vir ginia University, the University of Southern California, the University of California at Davis, East China Normal University, the University of Texas at Arlington, Universita di Padova, and the University of New Hampshire, among other places. As a result, I've obtained lots of valuable feedback from students and listeners, for which I am grateful. This writing continues a pattern. Earlier lectures at Bell Laboratories, at the University of Edin burgh and New York University, and at the Australian National University led to my earlier works (1968, 1974, and 1978). All seem to have been useful for the study of singular perturbations, and I hope the same will be true of this monograph. I've personally learned much from reading and analyzing the works of others, so I would especially encourage readers to treat this book as an introduction to a diverse and exciting literature. The topic coverage selected is personal and reflects my current opin ions. An attempt has been made to encourage a consistent method of ap proaching problems, largely through correcting outer limits in regions of rapid change. Formal proofs of correctness are not emphasized.

Boundary Value Problems for Analytic Functions

Boundary Value Problems for Analytic Functions PDF Author: Jian-Ke Lu
Publisher: World Scientific
ISBN: 9789810210205
Category : Mathematics
Languages : en
Pages : 484

Get Book Here

Book Description
This book deals with boundary value problems for analytic functions with applications to singular integral equations. New and simpler proofs of certain classical results such as the Plemelj formula, the Privalov theorem and the Poincar‚-Bertrand formula are given. Nearly one third of this book contains the author's original works, most of which have not been published in English before and, hence, were previously unknown to most readers in the world.It consists of 7 chapters together with an appendix: Chapter I describes the basic knowledge on Cauchy-type integrals and Cauchy principal value integrals; Chapters II and III study, respectively, fundamental boundary value problems and their applications to singular integral equations for closed contours; Chapters IV and V discuss the same problems for curves with nodes (including open arcs); Chaper VI deals with similar problems for systems of functions; Chapter VII is concerned with some miscellaneous problems and the Appendix contains some basic results on Fredholm integral equations. In most sections, there are carefully selected sets of exercises, some of which supplement the text of the sections; answers/hints are also given for some of these exercises.For graduate students or seniors, all the 7 chapters can be used for a full year course, while the first 3 chapters may be used for a one-semester course.