Author: Heydar Radjavi
Publisher: Springer Science & Business Media
ISBN: 9780387984667
Category : Mathematics
Languages : en
Pages : 338
Book Description
This volume is designed to appeal to two different, yet intersecting audiences: linear algebraists and operator theorists. The first half contains a thorough treatment of classical and recent results on triangularization of collections of matrices, while the remainder describes what is known about extensions to linear operators on Banach spaces. It will thus be useful to everyone interested in matrices or operators since the results involve many other topics.
Simultaneous Trianglularization
Author: Heydar Radjavi
Publisher: Springer Science & Business Media
ISBN: 9780387984667
Category : Mathematics
Languages : en
Pages : 338
Book Description
This volume is designed to appeal to two different, yet intersecting audiences: linear algebraists and operator theorists. The first half contains a thorough treatment of classical and recent results on triangularization of collections of matrices, while the remainder describes what is known about extensions to linear operators on Banach spaces. It will thus be useful to everyone interested in matrices or operators since the results involve many other topics.
Publisher: Springer Science & Business Media
ISBN: 9780387984667
Category : Mathematics
Languages : en
Pages : 338
Book Description
This volume is designed to appeal to two different, yet intersecting audiences: linear algebraists and operator theorists. The first half contains a thorough treatment of classical and recent results on triangularization of collections of matrices, while the remainder describes what is known about extensions to linear operators on Banach spaces. It will thus be useful to everyone interested in matrices or operators since the results involve many other topics.
Matrix Analysis
Author: Roger A. Horn
Publisher: Cambridge University Press
ISBN: 9780521386326
Category : Mathematics
Languages : en
Pages : 580
Book Description
Matrix Analysis presents the classical and recent results for matrix analysis that have proved to be important to applied mathematics.
Publisher: Cambridge University Press
ISBN: 9780521386326
Category : Mathematics
Languages : en
Pages : 580
Book Description
Matrix Analysis presents the classical and recent results for matrix analysis that have proved to be important to applied mathematics.
Matrix Mathematics
Author: Dennis S. Bernstein
Publisher: Princeton University Press
ISBN: 0691140391
Category : Mathematics
Languages : en
Pages : 1183
Book Description
Each chapter in this book describes relevant background theory followed by specialized results. Hundreds of identities, inequalities, and matrix facts are stated clearly with cross references, citations to the literature, and illuminating remarks.
Publisher: Princeton University Press
ISBN: 0691140391
Category : Mathematics
Languages : en
Pages : 1183
Book Description
Each chapter in this book describes relevant background theory followed by specialized results. Hundreds of identities, inequalities, and matrix facts are stated clearly with cross references, citations to the literature, and illuminating remarks.
Advanced Linear Algebra
Author: Nicholas A. Loehr
Publisher: CRC Press
ISBN: 1040039871
Category : Mathematics
Languages : en
Pages : 657
Book Description
Designed for advanced undergraduate and beginning graduate students in linear or abstract algebra, Advanced Linear Algebra covers theoretical aspects of the subject, along with examples, computations, and proofs. It explores a variety of advanced topics in linear algebra that highlight the rich interconnections of the subject to geometry, algebra, analysis, combinatorics, numerical computation, and many other areas of mathematics. The author begins with chapters introducing basic notation for vector spaces, permutations, polynomials, and other algebraic structures. The following chapters are designed to be mostly independent of each other so that readers with different interests can jump directly to the topic they want. This is an unusual organization compared to many abstract algebra textbooks, which require readers to follow the order of chapters. Each chapter consists of a mathematical vignette devoted to the development of one specific topic. Some chapters look at introductory material from a sophisticated or abstract viewpoint, while others provide elementary expositions of more theoretical concepts. Several chapters offer unusual perspectives or novel treatments of standard results. A wide array of topics is included, ranging from concrete matrix theory (basic matrix computations, determinants, normal matrices, canonical forms, matrix factorizations, and numerical algorithms) to more abstract linear algebra (modules, Hilbert spaces, dual vector spaces, bilinear forms, principal ideal domains, universal mapping properties, and multilinear algebra). The book provides a bridge from elementary computational linear algebra to more advanced, abstract aspects of linear algebra needed in many areas of pure and applied mathematics.
Publisher: CRC Press
ISBN: 1040039871
Category : Mathematics
Languages : en
Pages : 657
Book Description
Designed for advanced undergraduate and beginning graduate students in linear or abstract algebra, Advanced Linear Algebra covers theoretical aspects of the subject, along with examples, computations, and proofs. It explores a variety of advanced topics in linear algebra that highlight the rich interconnections of the subject to geometry, algebra, analysis, combinatorics, numerical computation, and many other areas of mathematics. The author begins with chapters introducing basic notation for vector spaces, permutations, polynomials, and other algebraic structures. The following chapters are designed to be mostly independent of each other so that readers with different interests can jump directly to the topic they want. This is an unusual organization compared to many abstract algebra textbooks, which require readers to follow the order of chapters. Each chapter consists of a mathematical vignette devoted to the development of one specific topic. Some chapters look at introductory material from a sophisticated or abstract viewpoint, while others provide elementary expositions of more theoretical concepts. Several chapters offer unusual perspectives or novel treatments of standard results. A wide array of topics is included, ranging from concrete matrix theory (basic matrix computations, determinants, normal matrices, canonical forms, matrix factorizations, and numerical algorithms) to more abstract linear algebra (modules, Hilbert spaces, dual vector spaces, bilinear forms, principal ideal domains, universal mapping properties, and multilinear algebra). The book provides a bridge from elementary computational linear algebra to more advanced, abstract aspects of linear algebra needed in many areas of pure and applied mathematics.
Linear Algebra and Matrices
Author: Helene Shapiro
Publisher: American Mathematical Soc.
ISBN: 1470418525
Category : Mathematics
Languages : en
Pages : 338
Book Description
Linear algebra and matrix theory are fundamental tools for almost every area of mathematics, both pure and applied. This book combines coverage of core topics with an introduction to some areas in which linear algebra plays a key role, for example, block designs, directed graphs, error correcting codes, and linear dynamical systems. Notable features include a discussion of the Weyr characteristic and Weyr canonical forms, and their relationship to the better-known Jordan canonical form; the use of block cyclic matrices and directed graphs to prove Frobenius's theorem on the structure of the eigenvalues of a nonnegative, irreducible matrix; and the inclusion of such combinatorial topics as BIBDs, Hadamard matrices, and strongly regular graphs. Also included are McCoy's theorem about matrices with property P, the Bruck-Ryser-Chowla theorem on the existence of block designs, and an introduction to Markov chains. This book is intended for those who are familiar with the linear algebra covered in a typical first course and are interested in learning more advanced results.
Publisher: American Mathematical Soc.
ISBN: 1470418525
Category : Mathematics
Languages : en
Pages : 338
Book Description
Linear algebra and matrix theory are fundamental tools for almost every area of mathematics, both pure and applied. This book combines coverage of core topics with an introduction to some areas in which linear algebra plays a key role, for example, block designs, directed graphs, error correcting codes, and linear dynamical systems. Notable features include a discussion of the Weyr characteristic and Weyr canonical forms, and their relationship to the better-known Jordan canonical form; the use of block cyclic matrices and directed graphs to prove Frobenius's theorem on the structure of the eigenvalues of a nonnegative, irreducible matrix; and the inclusion of such combinatorial topics as BIBDs, Hadamard matrices, and strongly regular graphs. Also included are McCoy's theorem about matrices with property P, the Bruck-Ryser-Chowla theorem on the existence of block designs, and an introduction to Markov chains. This book is intended for those who are familiar with the linear algebra covered in a typical first course and are interested in learning more advanced results.
Manual of Geodetic Triangulation
Author: F. R. Gossett
Publisher:
ISBN:
Category : Triangulation
Languages : en
Pages : 370
Book Description
Publisher:
ISBN:
Category : Triangulation
Languages : en
Pages : 370
Book Description
Switched Linear Systems
Author: Zhendong Sun
Publisher: Springer Science & Business Media
ISBN: 1846281318
Category : Technology & Engineering
Languages : en
Pages : 303
Book Description
Switched linear systems have enjoyed a particular growth in interest since the 1990s. The large amount of data and ideas thus generated have, until now, lacked a co-ordinating framework to focus them effectively on some of the fundamental issues such as the problems of robust stabilizing switching design, feedback stabilization and optimal switching. This deficiency is resolved by this book which features: nucleus of constructive design approaches based on canonical decomposition and forming a sound basis for the systematic treatment of secondary results; theoretical exploration and logical association of several independent but pivotal concerns in control design as they pertain to switched linear systems: controllability and observability, feedback stabilization, optimization and periodic switching; a reliable foundation for further theoretical research as well as design guidance for real life engineering applications through the integration of novel ideas, fresh insights and rigorous results.
Publisher: Springer Science & Business Media
ISBN: 1846281318
Category : Technology & Engineering
Languages : en
Pages : 303
Book Description
Switched linear systems have enjoyed a particular growth in interest since the 1990s. The large amount of data and ideas thus generated have, until now, lacked a co-ordinating framework to focus them effectively on some of the fundamental issues such as the problems of robust stabilizing switching design, feedback stabilization and optimal switching. This deficiency is resolved by this book which features: nucleus of constructive design approaches based on canonical decomposition and forming a sound basis for the systematic treatment of secondary results; theoretical exploration and logical association of several independent but pivotal concerns in control design as they pertain to switched linear systems: controllability and observability, feedback stabilization, optimization and periodic switching; a reliable foundation for further theoretical research as well as design guidance for real life engineering applications through the integration of novel ideas, fresh insights and rigorous results.
Advanced Topics in Linear Algebra
Author: Kevin O'Meara
Publisher: Oxford University Press
ISBN: 019987817X
Category : Mathematics
Languages : en
Pages : 423
Book Description
The Weyr matrix canonical form is a largely unknown cousin of the Jordan canonical form. Discovered by Eduard Weyr in 1885, the Weyr form outperforms the Jordan form in a number of mathematical situations, yet it remains somewhat of a mystery, even to many who are skilled in linear algebra. Written in an engaging style, this book presents various advanced topics in linear algebra linked through the Weyr form. Kevin O'Meara, John Clark, and Charles Vinsonhaler develop the Weyr form from scratch and include an algorithm for computing it. A fascinating duality exists between the Weyr form and the Jordan form. Developing an understanding of both forms will allow students and researchers to exploit the mathematical capabilities of each in varying situations. Weaving together ideas and applications from various mathematical disciplines, Advanced Topics in Linear Algebra is much more than a derivation of the Weyr form. It presents novel applications of linear algebra, such as matrix commutativity problems, approximate simultaneous diagonalization, and algebraic geometry, with the latter two having topical connections to phylogenetic invariants in biomathematics and multivariate interpolation. Among the related mathematical disciplines from which the book draws ideas are commutative and noncommutative ring theory, module theory, field theory, topology, and algebraic geometry. Numerous examples and current open problems are included, increasing the book's utility as a graduate text or as a reference for mathematicians and researchers in linear algebra.
Publisher: Oxford University Press
ISBN: 019987817X
Category : Mathematics
Languages : en
Pages : 423
Book Description
The Weyr matrix canonical form is a largely unknown cousin of the Jordan canonical form. Discovered by Eduard Weyr in 1885, the Weyr form outperforms the Jordan form in a number of mathematical situations, yet it remains somewhat of a mystery, even to many who are skilled in linear algebra. Written in an engaging style, this book presents various advanced topics in linear algebra linked through the Weyr form. Kevin O'Meara, John Clark, and Charles Vinsonhaler develop the Weyr form from scratch and include an algorithm for computing it. A fascinating duality exists between the Weyr form and the Jordan form. Developing an understanding of both forms will allow students and researchers to exploit the mathematical capabilities of each in varying situations. Weaving together ideas and applications from various mathematical disciplines, Advanced Topics in Linear Algebra is much more than a derivation of the Weyr form. It presents novel applications of linear algebra, such as matrix commutativity problems, approximate simultaneous diagonalization, and algebraic geometry, with the latter two having topical connections to phylogenetic invariants in biomathematics and multivariate interpolation. Among the related mathematical disciplines from which the book draws ideas are commutative and noncommutative ring theory, module theory, field theory, topology, and algebraic geometry. Numerous examples and current open problems are included, increasing the book's utility as a graduate text or as a reference for mathematicians and researchers in linear algebra.
Canadian Journal of Mathematics
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 226
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 226
Book Description
Journal of Research of the National Bureau of Standards
Author: United States. National Bureau of Standards
Publisher:
ISBN:
Category : Mathematical physics
Languages : en
Pages : 640
Book Description
Publisher:
ISBN:
Category : Mathematical physics
Languages : en
Pages : 640
Book Description