Simulating the Earth

Simulating the Earth PDF Author: J.R. Holloway
Publisher: Springer Science & Business Media
ISBN: 9401180288
Category : Science
Languages : en
Pages : 204

Get Book Here

Book Description
This is a book about the why and how of doing experiments on rocks, minerals, magmas, and fluids. It could have as logically been subtitled "Experimental petrology" as "Experimental geochemistry," but we chose geochemistry to emphasize the broad and overlapping nature of current experimental work. We have tried to aim the book at a general readership which we hope will include advanced undergraduate students, graduate students, and anyone else interested in learning something about experimental petrology. Although we hope there will be something of interest for the practicing experimentalist, our aim is at the non-experimentalist interested in learning why experiments are useful, what kind of experiments can be done, and what some of the major problems and limitations are and how they can best be avoided. The result of a journey through this book should be an ability to evaluate published experimental work critically and a knowledge of the kinds of problems an experimentalist might be able to help solve. Some details of experimental technique are included in the Appendix for those readers who want to "get their hands dirty. " Indeed, one of our main incentives for writing this book was to try to encourage more petrologists and geochemists to become experimentalists. In our pedagogical approach we have chosen to discuss a small number of case histories as illustrations of principles and techniques. We have tried to select studies we regard as well executed.

Simulating the Earth

Simulating the Earth PDF Author: J.R. Holloway
Publisher: Springer Science & Business Media
ISBN: 9401180288
Category : Science
Languages : en
Pages : 204

Get Book Here

Book Description
This is a book about the why and how of doing experiments on rocks, minerals, magmas, and fluids. It could have as logically been subtitled "Experimental petrology" as "Experimental geochemistry," but we chose geochemistry to emphasize the broad and overlapping nature of current experimental work. We have tried to aim the book at a general readership which we hope will include advanced undergraduate students, graduate students, and anyone else interested in learning something about experimental petrology. Although we hope there will be something of interest for the practicing experimentalist, our aim is at the non-experimentalist interested in learning why experiments are useful, what kind of experiments can be done, and what some of the major problems and limitations are and how they can best be avoided. The result of a journey through this book should be an ability to evaluate published experimental work critically and a knowledge of the kinds of problems an experimentalist might be able to help solve. Some details of experimental technique are included in the Appendix for those readers who want to "get their hands dirty. " Indeed, one of our main incentives for writing this book was to try to encourage more petrologists and geochemists to become experimentalists. In our pedagogical approach we have chosen to discuss a small number of case histories as illustrations of principles and techniques. We have tried to select studies we regard as well executed.

Mathematical Modeling of Earth's Dynamical Systems

Mathematical Modeling of Earth's Dynamical Systems PDF Author: Rudy Slingerland
Publisher: Princeton University Press
ISBN: 1400839114
Category : Science
Languages : en
Pages : 246

Get Book Here

Book Description
A concise guide to representing complex Earth systems using simple dynamic models Mathematical Modeling of Earth's Dynamical Systems gives earth scientists the essential skills for translating chemical and physical systems into mathematical and computational models that provide enhanced insight into Earth's processes. Using a step-by-step method, the book identifies the important geological variables of physical-chemical geoscience problems and describes the mechanisms that control these variables. This book is directed toward upper-level undergraduate students, graduate students, researchers, and professionals who want to learn how to abstract complex systems into sets of dynamic equations. It shows students how to recognize domains of interest and key factors, and how to explain assumptions in formal terms. The book reveals what data best tests ideas of how nature works, and cautions against inadequate transport laws, unconstrained coefficients, and unfalsifiable models. Various examples of processes and systems, and ample illustrations, are provided. Students using this text should be familiar with the principles of physics, chemistry, and geology, and have taken a year of differential and integral calculus. Mathematical Modeling of Earth's Dynamical Systems helps earth scientists develop a philosophical framework and strong foundations for conceptualizing complex geologic systems. Step-by-step lessons for representing complex Earth systems as dynamical models Explains geologic processes in terms of fundamental laws of physics and chemistry Numerical solutions to differential equations through the finite difference technique A philosophical approach to quantitative problem-solving Various examples of processes and systems, including the evolution of sandy coastlines, the global carbon cycle, and much more Professors: A supplementary Instructor's Manual is available for this book. It is restricted to teachers using the text in courses. For information on how to obtain a copy, refer to: http://press.princeton.edu/class_use/solutions.html

Demystifying Climate Models

Demystifying Climate Models PDF Author: Andrew Gettelman
Publisher: Springer
ISBN: 3662489597
Category : Technology & Engineering
Languages : en
Pages : 282

Get Book Here

Book Description
This book demystifies the models we use to simulate present and future climates, allowing readers to better understand how to use climate model results. In order to predict the future trajectory of the Earth’s climate, climate-system simulation models are necessary. When and how do we trust climate model predictions? The book offers a framework for answering this question. It provides readers with a basic primer on climate and climate change, and offers non-technical explanations for how climate models are constructed, why they are uncertain, and what level of confidence we should place in them. It presents current results and the key uncertainties concerning them. Uncertainty is not a weakness but understanding uncertainty is a strength and a key part of using any model, including climate models. Case studies of how climate model output has been used and how it might be used in the future are provided. The ultimate goal of this book is to promote a better understanding of the structure and uncertainties of climate models among users, including scientists, engineers and policymakers.

Simulating Nature

Simulating Nature PDF Author: Arthur C. Petersen
Publisher: CRC Press
ISBN: 1466500670
Category : Mathematics
Languages : en
Pages : 217

Get Book Here

Book Description
Computer simulation has become an important means for obtaining knowledge about nature. The practice of scientific simulation and the frequent use of uncertain simulation results in public policy raise a wide range of philosophical questions. Most prominently highlighted is the field of anthropogenic climate change-are humans currently changing the

Deep Learning for the Earth Sciences

Deep Learning for the Earth Sciences PDF Author: Gustau Camps-Valls
Publisher: John Wiley & Sons
ISBN: 1119646162
Category : Technology & Engineering
Languages : en
Pages : 436

Get Book Here

Book Description
DEEP LEARNING FOR THE EARTH SCIENCES Explore this insightful treatment of deep learning in the field of earth sciences, from four leading voices Deep learning is a fundamental technique in modern Artificial Intelligence and is being applied to disciplines across the scientific spectrum; earth science is no exception. Yet, the link between deep learning and Earth sciences has only recently entered academic curricula and thus has not yet proliferated. Deep Learning for the Earth Sciences delivers a unique perspective and treatment of the concepts, skills, and practices necessary to quickly become familiar with the application of deep learning techniques to the Earth sciences. The book prepares readers to be ready to use the technologies and principles described in their own research. The distinguished editors have also included resources that explain and provide new ideas and recommendations for new research especially useful to those involved in advanced research education or those seeking PhD thesis orientations. Readers will also benefit from the inclusion of: An introduction to deep learning for classification purposes, including advances in image segmentation and encoding priors, anomaly detection and target detection, and domain adaptation An exploration of learning representations and unsupervised deep learning, including deep learning image fusion, image retrieval, and matching and co-registration Practical discussions of regression, fitting, parameter retrieval, forecasting and interpolation An examination of physics-aware deep learning models, including emulation of complex codes and model parametrizations Perfect for PhD students and researchers in the fields of geosciences, image processing, remote sensing, electrical engineering and computer science, and machine learning, Deep Learning for the Earth Sciences will also earn a place in the libraries of machine learning and pattern recognition researchers, engineers, and scientists.

The Theoretical Minimum

The Theoretical Minimum PDF Author: Leonard Susskind
Publisher: Basic Books
ISBN: 0465038921
Category : Education
Languages : en
Pages : 165

Get Book Here

Book Description
A master teacher presents the ultimate introduction to classical mechanics for people who are serious about learning physics "Beautifully clear explanations of famously 'difficult' things," -- Wall Street Journal If you ever regretted not taking physics in college -- or simply want to know how to think like a physicist -- this is the book for you. In this bestselling introduction to classical mechanics, physicist Leonard Susskind and hacker-scientist George Hrabovsky offer a first course in physics and associated math for the ardent amateur. Challenging, lucid, and concise, The Theoretical Minimum provides a tool kit for amateur scientists to learn physics at their own pace.

Simulating Spacecraft Systems

Simulating Spacecraft Systems PDF Author: Jens Eickhoff
Publisher: Springer Science & Business Media
ISBN: 3642012760
Category : Science
Languages : en
Pages : 361

Get Book Here

Book Description
Satellite development worldwide has significantly changed within the last decade and has been accelerated and optimized by modern simulation tools. The classic method of developing and testing several models of a satellite and its subsystems with the aim to build a pre-flight and finally a flight model is being replaced more and more by a considerably faster and more inexpensive method. The new approach no longer includes functional test models on entire spacecraft level but a system simulation. Thus overall project runtimes can be shortened. But also significantly more complex systems can be managed and success oriented tests on integration and software level can be realized before the launch. Applying modern simulation infrastructures already during spacecraft development phase, enables the consistent functionality checking of all systems both in detail and concerning their interaction. Furthermore, they enable checks of the system's proper functionality, their reliability and safety / redundancy. But also analysis regarding aging and lifetime issues can be performed by simulation. Project-related simulations of operational scenarios, for example with remote sensing satellites, and the checking of different operational modes are of similar importance. On the whole, risk is reduced significantly and the satellite can be produced in a considerably more cost efficient way, with higher quality and in shorter periods of time. Therefore "Simulating Spacecraft Systems" - the title of the present book - is an important domain of modern system engineering, which meanwhile has successfully established a position in many other sectors of industry and research, too.

Computer Simulations of Space Societies

Computer Simulations of Space Societies PDF Author: William Sims Bainbridge
Publisher: Springer
ISBN: 9783319905594
Category : Computers
Languages : en
Pages : 254

Get Book Here

Book Description
At the intersection of astronautics, computer science, and social science, this book introduces the challenges and insights associated with computer simulation of human society in outer space, and of the dynamics of terrestrial enthusiasm for space exploration. Never before have so many dynamic representations of space-related social systems existed, some deeply analyzing the logical implications of social-scientific theories, and others open for experience by the general public as computer-generated virtual worlds. Fascinating software ranges from multi-agent artificial intelligence models of civilization, to space-oriented massively multiplayer online games, to educational programs suitable for schools or even for the world's space exploration agencies. At the present time, when actual forays by humans into space are scarce, computer simulations of space societies are an excellent way to prepare for a renaissance of exploration beyond the bounds of Earth.

Cutting-Edge Analogue Modeling Techniques Applied to Study Earth Systems

Cutting-Edge Analogue Modeling Techniques Applied to Study Earth Systems PDF Author: Mélody Philippon
Publisher: Frontiers Media SA
ISBN: 2889632865
Category :
Languages : en
Pages : 128

Get Book Here

Book Description


Plurigaussian Simulations in Geosciences

Plurigaussian Simulations in Geosciences PDF Author: Margaret Armstrong
Publisher: Springer Science & Business Media
ISBN: 3662127180
Category : Science
Languages : en
Pages : 197

Get Book Here

Book Description
Simulations are the fastest developing branch in geostatistics, and simulating the acies inside reservoirs and ore bodies is the most exciting part of this. Several methods have been developed to do this (sequential indicator simulations, Boolean methods, Markov chains and plurigaussian simulations). This book focusses on the last type of simulation. It develops the theory required to understand the method together and presents practical examples of applications in mining and petroleum, plus tutorial examples. An accompanying CD-ROM featuring demonstration software and color images complements the printed book.